Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Drexel Engineers Develop Cement With 97 Percent Smaller CO2 and Energy Footprint
by Staff Writers
Philadelphia PA (SPX) Feb 22, 2012


In contrast to ordinary Portland cement, Drexel's cement is made of up to 68 percent unfired limestone, a plentiful, cheap, and low-carbon dioxide resource; American Society for Testing and Materials' standards for Portland cement limit the amount to 5 percent.

Drexel University engineers have found a way to improve upon ordinary Portland cement (OPC), the glue that's bonded much of the world's construction since the late 1800s. In research recently published in Cement and Concrete Composites the group served up a recipe for cement that is more energy efficient and cost effective to produce than masonry's most prevalent bonding compound.

Drexel's "green" variety is a form of alkali-activated cement that utilizes an industrial byproduct, called slag, and a common mineral, limestone, and does not require heating to produce.

According to Dr. Michel W. Barsoum, A.W. Grosvenor professor in Drexel's Department of Materials Science and Engineering, this alternative production method and the ubiquity of the mix ingredients, lessens the cost of materials for Drexel's cement by about 40 percent versus Portland cement and reduces energy consumption and carbon dioxide production by 97 percent.

"Cement consumption is rapidly rising, especially in newly industrialized countries, and it's already responsible for 5 percent of human-made carbon dioxide. This is a unique way to limit the environmental consequences of meeting demand," Dr. Alex Moseson, one of the lead researchers on the project, said.

While forms of alkali-activated cement have been used as far back as the 1950s and 1960s in several buildings in the former Soviet Union, much of the inspiration for this research came from the Pyramids in Egypt, as well as buildings in ancient Rome.

"Our cement is more like ancient Roman cement than like modern Portland," Moseson said. "Although we won't know for 2,000 years if ours has the longevity of Roman buildings, it gives us an idea of the staying power of this material."

In contrast to ordinary Portland cement, Drexel's cement is made of up to 68 percent unfired limestone, a plentiful, cheap, and low-carbon dioxide resource; American Society for Testing and Materials' standards for Portland cement limit the amount to 5 percent.

To this base, a small amount of commercial alkali chemical is added along with the iron slag byproduct. In Portland cement the substitute for this mixture, called clinker, is produced by firing a number of ingredients in a kiln, thus requiring more energy and generating more carbon dioxide.

During Moseson's work in India to commercialize the technology, he developed products that meet local standards, using entirely local materials and techniques. He also investigated how the availability of green cement could help make quality building materials more affordable and accessible to marginalized populations living in slums, and create jobs by jump starting small-scale cement manufacturing in the country.

"Our results and the literature confirm that it performs as well or better than OPC," Barsoum said. "We are very close to having the cement pass an important commercialization milestone, ASTM C1157, a standard that judges cement-like products on performance, such as strength and setting-time, regardless of composition"

The next step for the cement is getting it to the market, which the group is working toward via a start-up company called Greenstone Technologies, Inc.

.


Related Links
Drexel University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Baylor research on carbon fibers could help NASA
Waco TX (SPX) Feb 22, 2012
A NASA-funded research project may help gain recognition for Baylor's students, faculty and research program, Dr. David Jack, assistant professor in mechanical engineering, said. NASA's space stations and shuttles currently use pressure vessels, which are containers with the ability to hold substances at high pressures. These pressure vessels �- or Composite Overwrapped Pressure Vessels, a ... read more


TECH SPACE
Back to the Moon A Modern Redux

X-rays illuminate the interior of the Moon

NASA Spacecraft Reveals Recent Geological Activity on the Moon

China publishes high-resolution full moon map

TECH SPACE
Rock Studies Continue for Opportunity

ISS may become Martian flight simulator

Honeycombs and Hexacopters Help Tell Story of Mars

Martian Carbon Dioxide Clouds Tied To Atmospheric Gravity Waves

TECH SPACE
Stark warning emerges from science summit

Glenn: I don't think of myself as a hero

ASU professor uses Star Trek themes to communicate science

50th anniversary of first US space flight is bittersweet

TECH SPACE
Launch of China's manned spacecraft Shenzhou-9 scheduled

Shenzhou 9 To Carry 3 Astronauts To Tiangong-1 Space Station

China to launch spacecraft in June: report

Is Shenzhou Unsafe?

TECH SPACE
Fifth ATV named after Georges Lemaitre

Space station panel installation delayed

Russian cosmonauts begin ISS spacewalk

Advanced Communications Testbed for Space Station

TECH SPACE
NuSTAR Mated to its Rocket

Rocket to be launched from Poker Flat Research Range

UA Huntsville scientific team helping Japanese space program launch safely

Iran mulls base to launch bigger satellites

TECH SPACE
Hubble Reveals a New Class of Extrasolar Planet

US scientists discover new 'waterworld' planet

Scattered Light Could Reveal Alien Atmospheres

Searching for Planets in Clouds of Dust

TECH SPACE
Baylor research on carbon fibers could help NASA

Drexel Engineers Develop Cement With 97 Percent Smaller CO2 and Energy Footprint

UK takes the lead in redefining the kilogram

China computer maker seeks Shanghai iPad sale ban




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement