Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Discovery of New Semiconductor Holds Promise for 2D Physics and Electronics
by Lynn Yarris for Berkeley News
Berkeley CA (SPX) Mar 25, 2014


Sefaattin Tongay was the lead author of a Nature Communications paper announcing the discovery of rhenium disulfide. Image courtesy Roy Kaltschmidt.

From super-lubricants, to solar cells, to the fledgling technology of valleytronics, there is much to be excited about with the discovery of a unique new two-dimensional semiconductor, rhenium disulfide, by researchers at Berkeley Lab's Molecular Foundry.

Rhenium disulfide, unlike molybdenum disulfide and other dichalcogenides, behaves electronically as if it were a 2D monolayer even as a 3D bulk material. This not only opens the door to 2D electronic applications with a 3D material, it also makes it possible to study 2D physics with easy-to-make 3D crystals.

"Rhenium disulfide remains a direct-bandgap semiconductor, its photoluminescence intensity increases while its Raman spectrum remains unchanged, even with the addition of increasing numbers of layers," says Junqiao Wu, a physicist with Berkeley Lab's Materials Sciences Division who led this discovery.

"This makes bulk crystals of rhenium disulfide an ideal platform for probing 2D excitonic and lattice physics, circumventing the challenge of preparing large-area, single-crystal monolayers."

Wu, who is also a professor with the University of California-Berkeley's Department of Materials Science and Engineering, headed a large international team of collaborators who used the facilities at the Molecular Foundry, a U.S Department of Energy (DOE) national nanoscience center, to prepare and characterize individual monolayers of rhenium disulfide.

Through a variety of spectroscopy techniques, they studied these monolayers both as stacked multilayers and as bulk materials. Their study revealed that the uniqueness of rhenium disulfide stems from a disruption in its crystal lattice symmetry called a Peierls distortion.

"Semiconducting transition metal dichalcogenides consist of monolayers held together by weak forces," says Sefaattin Tongay, lead author of a paper describing this research in Nature Communications for which Wu was the corresponding author. The paper was titled "Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling."

"Typically the monolayers in a semiconducting transition metal dichalcogenides, such as molybdenum disulfide, are relatively strongly coupled, but isolated monolayers show large changes in electronic structure and lattice vibration energies," Tongay says. "The result is that in bulk these materials are indirect gap semiconductors and in the monolayer they are direct gap."

What Tongay, Wu and their collaborators found in their characterization studies was that rhenium disulfide contains seven valence electrons as opposed to the six valence electrons of molybdenum disulfide and other transition metal dichalcogenides. This extra valence electron prevents strong interlayer coupling between multiple monolayers of rhenium disulfide.

"The extra electron is eventually shared between two rhenium atoms, which causes the atoms to move closer to one another other, forming quasi-one-dimensional chains within each layer and creating the Peierls distortion in the lattice," Tongay says.

"Once the Peierls distortion takes place, interlayer registry is largely lost, resulting in weak interlayer coupling and monolayer behavior in the bulk."

Rhenium disulfide's weak interlayer coupling should make this material highly useful in tribology and other low-friction applications. Since rhenium disulfide also exhibits strong interactions between light and matter that are typical of monolayer semiconductors, and since the bulk rhenium disulfide behaves as if it were a monolayer, the new material should also be valuable for solar cell applications. It might also be a less expensive alternative to diamond for valleytronics.

In valleytronics, the wave quantum number of the electron in a crystalline material is used to encode information. This number is derived from the spin and momentum of an electron moving through a crystal lattice as a wave with energy peaks and valleys. Encoding information when the electrons reside in these minimum energy valleys offers a highly promising potential new route to quantum computing and ultrafast data-processing.

"Rhenium atoms have a relatively large atomic weight, which means electron spin-orbit interactions are significant," Tongay says. "This could make rhenium disulfide an ideal material for valleytronics applications."

The collaboration is now looking at ways to tune the properties of rhenium disulfide in both monolayer and bulk crystals through engineered defects in the lattice and selective doping. They are also looking to alloy rhenium disulfide with other members of the dichalcogenide family.

Other authors of the Nature Communications paper in addition to Wu and Tongay were Hasan Sahin, Changhyun Ko, Alex Luce, Wen Fan, Kai Liu, Jian Zhou, Ying-Sheng Huang, Ching-Hwa Ho, Jinyuan Yan, Frank Ogletree, Shaul Aloni, Jie Ji, Shushen Li, Jingbo Li, and F. M. Peeters.

.


Related Links
Berkeley Lab
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Scientists open a new window into quantum physics with superconductivity in LEDs
Toronto, Canada (SPX) Mar 24, 2014
A team of University of Toronto physicists led by Alex Hayat has proposed a novel and efficient way to leverage the strange quantum physics phenomenon known as entanglement. The approach would involve combining light-emitting diodes (LEDs) with a superconductor to generate entangled photons and could open up a rich spectrum of new physics as well as devices for quantum technologies, includ ... read more


CHIP TECH
Unique camera from NASA's moon missions sold at auction

ASU camera creates stunning mosaic of moon's polar region

China's Jade Rabbit lunar rover rouses from latest slumber

NASA Releases First Interactive Mosaic of Lunar North Pole

CHIP TECH
Helpful Wind Cleans Solar Panels On Opportunity Mars Rover

NASA Mars Rover's Next Stop Has Sandstone Variations

NASA Orbiter Finds New Gully Channel on Mars

The Exploration of Murray Ridge Continues

CHIP TECH
You've got mail: Clinton-to-space laptop up for auction

US more dependent on Russia in space, than Russia on US - NASA

TED turns 30 with new chapter of 'ideas worth spreading'

Orion Makes Testing, Integration Strides Ahead of First Launch to Space

CHIP TECH
Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

CHIP TECH
New ISS Crew Wrapping Up Training for Launch

NASA Extends Lockheed Martin Contract to Support ISS

How astronauts survive diplomatic tensions in space

Russian Progress Spacecraft Boosts ISS Orbit

CHIP TECH
Arianespace Launches ASTRA 5B and Amazonas 4A

SpaceX Launch to the ISS Reset for March 30

Ariane 5 hardware arrives for next ATV mission

Proton-M with two Russian communication satellites on board blasts off from Baikonur

CHIP TECH
Space Sunflower May Help Snap Pictures of Planets

NRL Researchers Detect Water Around a Hot Jupiter

UK joins the planet hunt with Europe's PLATO mission

X-ray laser FLASH spies deep into giant gas planets

CHIP TECH
Getting rid of bad vibrations

Cisco pushes into 'cloud' with $1 bn investment

Recovering valuable substances from wastewater

Shock-absorbing 'goo' discovered in bone




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.