Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Detection of the cosmic gamma ray horizon: Measures all the light in the universe since the Big Bang
by Staff Writers
Riverside CA (SPX) May 27, 2013


This figure illustrates how energetic gamma rays (dashed lines) from a distant blazar strike photons of extragalactic background light (wavy lines) and produce pairs of electrons and positrons. The energetic gamma rays that are not attenuated by this process strike the upper atmosphere, producing a cascade of charged particles which make a cone of Cerenkov light that is detected by the array of imaging atmospheric Cerenkov telescopes on the ground. Credit: Nina McCurdy and Joel R. Primack/UC-HiPACC; Blazar: Frame from a conceptual animation of 3C 120 created by Wolfgang Steffen/UNAM. For a larger version of this image please go here.

How much light has been emitted by all galaxies since the cosmos began? After all, almost every photon (particle of light) from ultraviolet to far infrared wavelengths ever radiated by all galaxies that ever existed throughout cosmic history is still speeding through the Universe today.

If we could carefully measure the number and energy (wavelength) of all those photons - not only at the present time, but also back in time - we might learn important secrets about the nature and evolution of the Universe, including how similar or different ancient galaxies were compared to the galaxies we see today.

That bath of ancient and young photons suffusing the Universe today is called the extragalactic background light (EBL). An accurate measurement of the EBL is as fundamental to cosmology as measuring the heat radiation left over from the Big Bang (the cosmic microwave background) at radio wavelengths.

A new paper, called "Detection of the Cosmic ?-Ray Horizon from Multiwavelength Observations of Blazars," by Alberto Dominguez and six coauthors, just published today by the Astrophysical Journal - based on observations spanning wavelengths from radio waves to very energetic gamma rays, obtained from several NASA spacecraft and several ground-based telescopes - describes the best measurement yet of the evolution of the EBL over the past 5 billion years.

Directly measuring the EBL by collecting its photons with a telescope, however, poses towering technical challenges - harder than trying to see the dim band of the Milky Way spanning the heavens at night from midtown Manhattan. Earth is inside a very bright galaxy with billions of stars and glowing gas.

Indeed, Earth is inside a very bright solar system: sunlight scattered by all the dust in the plane of Earth's orbit creates the zodiacal light radiating across the optical spectrum down to long-wavelength infrared. Therefore ground-based and space-based telescopes have not succeeded in reliably measuring the EBL directly.

So, astrophysicists developed an ingenious work-around method: measuring the EBL indirectly through measuring the attenuation of - that is, the absorption of - very high energy gamma rays from distant blazars. Blazars are supermassive black holes in the centers of galaxies with brilliant jets directly pointed at us like a flashlight beam. Not all the high-energy gamma rays emitted by a blazar, however, make it all the way across billions of light-years to Earth; some strike a hapless EBL photon along the way.

When a high-energy gamma ray photon from a blazar hits a much lower energy EBL photon, both are annihilated and produce two different particles: an electron and its antiparticle, a positron, which fly off into space and are never heard from again. Different energies of the highest-energy gamma rays are waylaid by different energies of EBL photons.

Thus, measuring how much gamma rays of different energies are attenuated or weakened from blazars at different distances from Earth indirectly gives a measurement of how many EBL photons of different wavelengths exist along the line of sight from blazar to Earth over those different distances.

Observations of blazars by NASA's Fermi Gamma Ray Telescope spacecraft for the first time detected that gamma rays from distant blazars are indeed attenuated more than gamma rays from nearby blazars, a result announced on November 30, 2012, in a paper published in Science, as theoretically predicted.

Now, the big news - announced in today's Astrophysical Journal paper - is that the evolution of the EBL over the past 5 billion years has been measured for the first time. That's because looking farther out into the Universe corresponds to looking back in time. Thus, the gamma ray attenuation spectrum from farther distant blazars reveals how the EBL looked at earlier eras.

This was a multistep process. First, the coauthors compared the Fermi findings to intensity of X-rays from the same blazars measured by X-ray satellites Chandra, Swift, Rossi X-ray Timing Explorer, and XMM/Newton and lower-energy radiation measured by other spacecraft and ground-based observatories. From these measurements, Dominguez et al. were able to calculate the blazars' original emitted, unattenuated gamma-ray brightnesses at different energies.

The coauthors then compared those calculations of unattenuated gamma-ray flux at different energies with direct measurements from special ground-based telescopes of the actual gamma-ray flux received at Earth from those same blazars.

When a high-energy gamma ray from a blazar strikes air molecules in the upper regions of Earth's atmosphere, it produces a cascade of charged subatomic particles. This cascade of particles travels faster than the speed of light in air (which is slower than the speed of light in a vacuum).

This causes a visual analogue to a "sonic boom": bursts of a special light called Cerenkov radiation. This Cerenkov radiation was detected by imaging atmospheric Cerenkov telescopes (IACTs), such as HESS (High Energy Stereoscopic System) in Namibia, MAGIC (Major Atmospheric Gamma Imaging Cerenkov) in the Canary Islands, and VERITAS (Very Energetic Radiation Imaging Telescope Array Systems) in Arizona.

Comparing the calculations of the unattenuated gamma rays to actual measurements of the attenuation of gamma rays and X-rays from blazars at different distances allowed Dominquez et al. to quantify the evolution of the EBL - that is, to measure how the EBL changed over time as the Universe aged - out to about 5 billion years ago (corresponding to a redshift of about z = 0.5). "Five billion years ago is the maximum distance we are able to probe with our current technology," Dominguez said.

"Sure, there are blazars farther away, but we are not able to detect them because the high-energy gamma rays they are emitting are too attenuated by EBL when they get to us - so weakened that our instruments are not sensitive enough to detect them."

This measurement is the first statistically significant detection of the so-called "Cosmic Gamma Ray Horizon" as a function of gamma-ray energy. The Cosmic Gamma Ray Horizon is defined as the distance at which roughly one-third (or, more precisely, 1/e - that is, 1/2.718 - where e is the base of the natural logarithms) of the gamma rays of a particular energy have been attenuated.

This latest result confirms that the kinds of galaxies observed today are responsible for most of the EBL over all time. Moreover, it sets limits on possible contributions from many galaxies too faint to have been included in the galaxy surveys, or on possible contributions from hypothetical additional sources (such as the decay of hypothetical unknown elementary particles).

.


Related Links
University of California High-Performance AstroComputing Center
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
NASA's Fermi, Swift See 'Shockingly Bright' Burst
Greenbelt MD (SPX) May 08, 2013
A record-setting blast of gamma rays from a dying star in a distant galaxy has wowed astronomers around the world. The eruption, which is classified as a gamma-ray burst, or GRB, and designated GRB 130427A, produced the highest-energy light ever detected from such an event. "We have waited a long time for a gamma-ray burst this shockingly, eye-wateringly bright," said Julie McEnery, projec ... read more


STELLAR CHEMISTRY
Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

Moon being pushed away from Earth faster than ever

Bright Explosion on the Moon

STELLAR CHEMISTRY
Opportunity Departing 'Cape York'

Bacterium from Canadian High Arctic and life on Mars

Curiosity Drills Second Rock Target

Mars Rover Opportunity Examines Clay Clues in Rock

STELLAR CHEMISTRY
Northrop Grumman-Built Modular Space Vehicle Nears Completion of Manufacturing Phase

French government posts space counsellor in Bangalore

3D Printing: Food in Space

Chinese group bids for Club Med holidays: firms

STELLAR CHEMISTRY
Shopping for Shenzhou

Waiting for Shenzhou 10

China launches communications satellite

On Course for Shenzhou 10

STELLAR CHEMISTRY
International trio takes shortcut to space station

Science and Maintenance for Station Crew, New Crew Members Prep for Launch

ESA Euronews: Living in space

Next destination: space

STELLAR CHEMISTRY
First Light Angara Rocket Ready for Launch

Russia to launch 12 Proton-M rockets in 2013

Russian Spacecraft Manufacturer to Make Four Launches in 2014

Electric Propulsion

STELLAR CHEMISTRY
Big Weather on Hot Jupiters

Critical Kepler Reaction Wheel Fails: Mission End In Sight

Sifting Through the Atmosphere's of Far-Off Worlds

New Method of Finding Planets Scores its First Discovery

STELLAR CHEMISTRY
Helicopter-light-beams - a new tool for quantum optics

Just how secure is quantum cryptography

One Year Anniversary of KOMPSAT-3 Launch

Crystal-clear method for distinguishing between glass and fluids




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement