Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Gamma rays from dwarf galaxy may point to dark matter
by Staff Writers
Providence RI (SPX) Mar 12, 2015


A galaxy 98,000 light-years away. Scientists at Brown, Carnegie Mellon, and Cambridge universities have detected gamma ray emissions from the direction of the galaxy Reticulum 2. Bright areas indicate a strong gamma ray signal coming from the direction of the galaxy, according to the researchers' search algorithm. Image courtesy NASA/DOE/Fermi-LAT Collaboration/Geringer-Sameth and Walker/Carnegie Mellon University/Koushiappas/Brown University.

A newly discovered dwarf galaxy orbiting our own Milky Way has offered up a surprise - it appears to be radiating gamma rays, according to an analysis by physicists at Carnegie Mellon, Brown, and Cambridge universities. The exact source of this high-energy light is uncertain at this point, but it just might be a signal of dark matter lurking at the galaxy's center.

"Something in the direction of this dwarf galaxy is emitting gamma rays," said Alex Geringer-Sameth, a postdoctoral research associate in CMU's Department of Physics and the paper's lead author.

"There's no conventional reason this galaxy should be giving off gamma rays, so it's potentially a signal for dark matter."

The galaxy, named Reticulum 2, was discovered within the last few weeks in the data of the Dark Energy Survey, an experiment that maps the southern sky to understand the accelerated expansion of the universe.

At approximately 98,000 light-years from Earth, Reticulum 2 is one of the nearest dwarf galaxies yet detected. Using publicly available data from NASA's Fermi Gamma-ray Space Telescope, CMU's Geringer-Sameth and Matthew Walker and Brown's Savvas Koushiappas have shown gamma rays coming from the direction of the galaxy in excess of what would be expected from normal background.

"In the search for dark matter, gamma rays from a dwarf galaxy have long been considered a very strong signature," said Koushiappas, assistant professor of physics at Brown.

"It seems like we may now be detecting such a thing for the first time."

Gamma rays and dark matter
No one knows exactly what dark matter is, but it is thought to account for around 80 percent of the matter in the universe. Scientists know that dark matter exists because it exerts gravitational effects on visible matter, which explains the observed rotation of galaxies and galaxy clusters as well as fluctuations in the cosmic microwave background.

"The gravitational detection of dark matter tells you very little about the particle behavior of the dark matter," said Matthew Walker, assistant professor of physics and a member of CMU's McWilliams Center for Cosmology. "But now we may have a non-gravitational detection that shows dark matter behaving like a particle, which is a holy grail of sorts."

A leading theory suggests that dark matter particles are WIMPs - Weakly Interacting Massive Particles. When pairs of WIMPs meet, they annihilate one another, giving off high-energy gamma rays.

If that's true, then there should be a lot of gamma rays emanating from places where WIMPs are thought to be plentiful, like the dense centers of galaxies. The trouble is, the high-energy rays also originate from many other sources, including black holes and pulsars, which makes it difficult to untangle a dark matter signal from the background noise.

That's why dwarf galaxies are important in the hunt for the dark matter particle. Dwarfs are thought to lack other gamma-ray-producing sources, so a gamma ray flux from a dwarf galaxy would make a very strong case for dark matter.

"They're basically very clean and quiet systems," Koushiappas said.

Scientists have been looking at them for signs of gamma rays for the last several years using NASA's Fermi Gamma-ray Space Telescope. There's never been a convincing signal until now.

Over the last few years Geringer-Sameth, Koushiappas, and Walker have been developing an analysis technique that searches for weak signals in the gamma ray data that could be due to dark matter annihilation. With the discovery of Reticulum 2, Geringer-Sameth turned his attention to that part of the sky. He looked at all of the gamma rays coming from the direction of the dwarf galaxy as well as gamma rays coming from adjacent areas of the sky to provide a background level.

"There did seem to be an excess of gamma rays, above what you would expect from normal background processes, coming from the direction of this galaxy," Geringer-Sameth said. "Given the way that we think we understand how gamma rays are generated in this region of the sky, it doesn't seem that those processes can explain this signal."

Further study of this dwarf galaxy's attributes could reveal hidden sources that may be emitting gamma rays, but the researchers are cautiously optimistic.

"The fact that there are gamma rays and also a clump of dark matter in the same direction makes it quite interesting," Walker said.

The researchers have submitted their analysis to the journal Physical Review Letters and posted it on arXiv. They caution that while these preliminary results are exciting, there is more work to be done to confirm a dark-matter origin.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brown University
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Terrestrial Gamma-ray Flashes, More Common Than Previously Thought?
Huntsville AL (SPX) Jan 02, 2015
by Dr. Tony Phillips Each day, thunderstorms around the world produce about a thousand quick bursts of gamma rays, some of the highest-energy light naturally found on Earth. By merging records of events seen by NASA's Fermi Gamma-ray Space Telescope with data from ground-based radar and lightning detectors, scientists have completed the most detailed analysis to date of the types of thunderstor ... read more


STELLAR CHEMISTRY
China Gets One Step Closer to Completing its Ambitious Lunar Mission

Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

STELLAR CHEMISTRY
Mystery Giant Mars Plumes Still Unexplained

Use of Rover Arm Expected to Resume in a Few Days

Revolutionary Engine Could Fuel Human Life on Mars

Have you ever used a camera on board an interplanetary spacecraft

STELLAR CHEMISTRY
Orion's Launch Abort System Motor Exceeds Expectations

Planetary Society Announces Test Flight for Privately Funded LightSail Spacecraft

Space soprano plans first duet from ISS

Cheap yen, fading Fukushima fears lure Japan tourists

STELLAR CHEMISTRY
China has ability but no plan for manned lunar mission: expert

Tianzhou-1 cargo ship to dock with space lab in 2016

China's test spacecraft simulates orbital docking

China at technical preparation stage for Mars, asteroid exploration

STELLAR CHEMISTRY
International Space Station 'Lost' Without Russia Says NASA Chief

US astronauts speed through spacewalk at orbiting lab

Watching Alloys Change from Liquid to Solid Could Lead to Better Metals

NASA Hopes to Continue Cooperation on ISS Until 2024

STELLAR CHEMISTRY
THOR 7 being fueled for Arianespace's dual-payload April mission

Arianespace wins SES-15 launch contract

Soyuz Installed at Baikonur, Expected to Launch Wednesday

Arianespace's Soyuz ready for next dual-satellite Galileo launch

STELLAR CHEMISTRY
'Habitable' planet GJ 581d previously dismissed as noise probably does exist

Scientists: Nearby Earth-like planet isn't just 'noise'

Exorings on the Horizon

Planet 'Reared' by Four Parent Stars

STELLAR CHEMISTRY
Sony virtual reality head gear set for 2016 release

Breakthrough in nonlinear optics research

Google gearing Android for virtual reality: report

Video game makers grapple with need for diversity




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.