. 24/7 Space News .
STELLAR CHEMISTRY
Deep space X-ray burst gives astronomers new signal to detect neutron star mergers
by Staff Writers
Las Vegas NV (SPX) Apr 17, 2019

file illustration only

An international team of astronomers, including faculty and alumni from UNLV, has discovered a new way to spot when collisions occur in distant galaxies between two neutron stars - incredibly dense, city-sized celestial bodies that possess the most powerful magnetic fields in the universe.

A bright burst of X-rays captured by NASA's Chandra X-ray Observatory in a galaxy located 6.6 billion light years from Earth likely signaled the merger of two neutron stars into a new, heavier and freakishly magnetic neutron star - known as a magnetar - and offered astronomers a rare glimpse into how neutron stars are made. The team's findings were published in the April 11 issue of the journal Nature.

When neutron stars merge they produce jets of high-energy particles and radiation. If the jet is pointed toward Earth, a flash, or burst, of gamma rays can be detected. If the jet is not pointed in our direction, scientists look for other signals, including the detection of gravitational waves.

With the observation of a bright burst of X-rays, astronomers have found another signal, one that validates predictions first made in 2013 by UNLV astrophysicist Bing Zhang, a member of the research team and one of the study's corresponding authors.

Researchers identified the likely origin of the source, dubbed XT2, by studying how its X-ray light varied with time, and comparing this behavior with predictions by Zhang for the likely X-ray signature produced by a newly-formed magnetar. XT2 matched the characteristic signature predicted by Zhang, which gives astronomers a new window into the interior of neutron stars, objects that are so dense that their properties could never be replicated on Earth.

"We can't throw neutron stars together in a lab to see what happens, so we have to wait until the universe does it for us," said Zhang.

The discovery of a remnant magnetar also disrupts a common belief among scientists that the merger of two neutron stars would only result in the formation of a black hole, either immediately or in less than a second.

"This discovery confirms that at least some of these mergers will make die-hard massive neutron stars that can survive an extended period of time," said Zhang. "If two neutron stars can collide and a heavy neutron star survives, then this also tells us that their structure is relatively stiff and resilient."

Chandra observed XT2 in March 2015 as it suddenly appeared and then faded away within hours. Researchers say it's possible the magnetar lost energy through an X-ray-emitting wind, slowing down its rate of spin as the source faded. The amount of X-ray emission stayed roughly constant for about 30 minutes, then its brightness gradually decreased before becoming undetectable.

The source is located in the Chandra Deep Field-South, which is the deepest X-ray image ever taken. Though the source first appeared in 2015, it was discovered later through an analysis of archival data.

"The serendipitous discovery of XT2 makes another strong case that nature's fecundity repeatedly transcends human imagination," said co-author Niel Brandt of the Pennsylvania State University and principal investigator of the relevant Chandra Deep Field-South.

The international team, led by Yongquan Xue of the University of Science and Technology of China, also considered whether the collapse of a massive star could have caused XT2, rather than a neutron star merger.

The source is in the outskirts of its host galaxy, which aligns with the idea that supernova explosions that left behind the neutron stars kicked them there a few billion years earlier. The galaxy itself also has certain properties - including a low rate of star formation compared to other galaxies of a similar mass - that are much more consistent with the type of galaxy where the merger of two neutron stars is expected to occur.

"The host-galaxy properties of XT2 indeed boost our confidence in explaining its origin," said co-author Ye Li, a postdoctoral fellow at Peking University and former UNLV Ph.D. student.

Armed with new insight, the research team is now reviewing Chandra data for similar sources. "Just as with this source, the data sitting in archives might contain some unexpected treasures," said co-author Xuechen Zheng, also of the University of Science and Technology of China.

The search for neutron star mergers also continue at the advanced Laser Interferometer Gravitational-Wave Observatory, which detected gravitational waves from a neutron star merger in 2017.

"A magnetar-powered X-ray transient as aftermath of a binary neutron star merger" appears in the April 11, 2019 issue of Nature. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

Research paper


Related Links
University of Nevada, Las Vegas
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Galaxies Lacking Dark Matter Do in Fact Exist
Kamuela HI (SPX) Apr 04, 2019
After drawing both praise and skepticism, the team of astronomers who discovered NGC 1052-DF2 - the very first known galaxy to contain little to no dark matter - are back with stronger evidence about its bizarre nature. Dark matter is a mysterious, invisible substance that typically dominates the makeup of galaxies; finding an object that's missing dark matter is unprecedented, and came as a complete surprise. "If there's one object, you always have a little voice in the back of your mind sa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
UAE Names First Astronaut to Fly to ISS on Board Russian Soyuz Vehicle

Music for space

US Astronauts Have 15 Minutes to Evacuate to Russian Part of ISS If NH3 Leaks

Asteroids help scientists measure distant stars

STELLAR CHEMISTRY
Roscosmos, S7 Group Mull Developing Reusable Commercial Space Vehicle

Russia Developing Launch Vehicles Similar to Falcon Heavy - Deputy PM

World's largest plane makes first test flight

Drop test proves technologies for reusable microlauncher

STELLAR CHEMISTRY
ExoMars carrier module prepares for final pre-launch testing

First results from the ExoMars Trace Gas Orbiter

Curiosity Tastes First Sample in 'Clay-Bearing Unit'

Tests for the InSight 'Mole'

STELLAR CHEMISTRY
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

STELLAR CHEMISTRY
ESA opening up to new ideas

Canadian Space Agency Sees Science Cooperation With Russia as Area of Growth

Spacecraft Repo Operations

Forging the future

STELLAR CHEMISTRY
ESA oversees teaching of Europe's next top solderers

Rocket break-up provides rare chance to test debris formation

When debris overwhelms space exploitation

Northrop Grumman awarded $3B for 24 Hawkeye early warning aircraft

STELLAR CHEMISTRY
Are brown dwarfs failed stars or super-planets?

Samara scientists research how building material for planets appears in the universe

TESS finds its first Earth-sized planet

Necrophagy: A means of survival in the Dead Sea

STELLAR CHEMISTRY
Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.