Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



Dawn Team Looking Good For Launch Next Year

During its voyage, Dawn (pictured) will travel more than 1.5 million times farther from Earth than astronauts who work on the International Space Station, so emergency roadside assistance will be quite unavailable. Image credit: NASA/JPL
by Marc D. Rayman
Chief Engineer, NASA Dawn Project
Pasadena CA (JPL) Jun 01, 2006
Dawn is making good progress preparing for its 2007 launch. Let's look forward to some of what must happen during the next year on the most visible part of the project - the spacecraft - to prepare for its launch.

We will discuss other tasks - such as training operations team members, formulating details of the science data acquisition plans, finalizing the software to be used by mission controllers, selecting the ascent trajectory for the rocket, designing Dawn pins, shirts, tattoos, etc. - in later logs.

In the previous log (which, it may be revealed with pride, has been nominated for Spam of the Year awards on fewer than 10 planets per galaxy averaged over the full spatial range of readership), it was reported that the spacecraft already was about 90 percent assembled.

It may seem surprising, then, that Dawn still has a very full Earth-bound year ahead of it. One reason is that attaching any of the sophisticated hardware systems to the spacecraft is a very exacting and thus time-consuming process.

Most of the units on the spacecraft are complex, expensive, custom-built devices that must be handled with extraordinary care to minimize the risk of damage. In some cases, repair or replacement could take months or even years.

Unlike production-line products, such as aircraft, cars, computers and those nifty thought-controlled confectionery machines that are popular in the Large Magellanic Cloud, the Dawn spacecraft design is being assembled for the first time and there won't be an opportunity for a second chance. That calls for extreme care in every step.

Before any electrical device is connected, a painstaking procedure is followed to verify that all wires carry the signals they are supposed to.

We cannot risk that some undetected damage to a connector might create a short circuit or that an error in the wiring, or even in the documentation for the wiring, might lead to too much power being delivered to a sensitive electrical component.

All mechanical connections have to be checked carefully as well, to be sure that they do not place undue stress on other parts that could lead to misalignments of components or structural weakening that might compromise the spacecraft.

Every device is attached securely enough to survive launch but not so tightly that something is damaged or distorted.

To reduce the possibility of human error, each step in the long process of assembling the spacecraft is planned and documented in detail. The work executed meticulously by one technician or engineer is observed by another who also carefully inspects the workmanship.

While each of us is eager to get Dawn on its way, rushing this work is unwise. Once it has embarked upon its cosmic travels, repairing any electrical or mechanical problems generally will be extremely difficult or impossible.

During its voyage, Dawn will travel more than 1.5 million times farther from Earth than astronauts who work on the International Space Station, so emergency roadside assistance will be quite unavailable.

Many mission control teams have accomplished remarkably innovative repairs on remote spacecraft, or learned to work around irreparable damage, but expending the effort before launch to prevent problems after launch is the best recipe for success.

That brings us to the work that will be the primary focus of the combined Orbital Sciences/JPL team between now and launch. Dawn's mission to explore alien worlds we have only glimpsed from afar will be an extremely arduous one, so we will subject the spacecraft to extensive testing to verify that it is up to the challenge.

Each component receives a battery of tests during its own assembly before being brought to the spacecraft, but the majority of the testing that awaits Dawn is on the spacecraft as a whole to make sure that all systems work together correctly and perform as intended in their installed configurations.

Most of the rest of this spring (Note: all seasons herein refer to Earth's northern hemisphere. Nonresident readers, consult your almanacs.) will be devoted to the first set of comprehensive performance tests, putting hardware and software subsystems now on the spacecraft through their paces.

Following the tradition nearly as ancient and revered as nerdiness itself, these tests are generally referred to by an acronym: CPTs.

In addition to helping establish that the subsystems perform as they are designed, the first set of CPTs will establish a reference against which to compare the results of subsequent runs of the same CPTs, thereby showing that other tests performed on the spacecraft did not damage it.

The CPTs have already been executed on simulators to make sure that they work correctly so that valuable time with the spacecraft is used effectively.

Although the spacecraft is in an environmentally controlled facility (a "clean room," quite unlike my office) most of the systems on it came with a small inventory of chemicals that could contaminate some of the sensitive surfaces when Dawn is in space.

Therefore, during the heat of the Dulles, Va., summer, the spacecraft will be baked for about a week in a vacuum chamber to drive off these undesirable contaminants.

The chamber will be much hotter than the outdoors at Orbital Sciences, but the vacuum will make it less humid than Dulles. Nevertheless, this environment is not recommended even for those who prefer dry heat.

CPTs will be repeated afterwards to verify that no harm was inflicted during the relocation or the baking.

During the gorgeous Virginia autumn, the Dawn team will conduct a series of tests designed to prove that the spacecraft can withstand the environmental conditions it will face during launch.

It will be exposed to the thunderous noise that will rumble around it in the rocket as well as vibration, shock waves, and electromagnetic fields.

Despite the inability to predict weather far in advance, the Dawn team already knows that the winter will be a time of great temperature variation. In preparation for what it will experience during spaceflight, the spacecraft will once again be placed in a thermal vacuum chamber, but for much longer than the bake-out.

Over the course of about a month, Dawn will experience sweltering heat and biting cold, and it will have to prove that it can operate as designed throughout the range.

We do not want problems, but finding them here on Earth would be far superior to discovering them when Dawn is in the far reaches of deep space.

Although human readers might consider all these tests to be punishing in the extreme, it is worth recalling that much of the work in designing the spacecraft was devoted to ensuring that the system would be able to operate under such harsh conditions.

The tests over the coming year will give Dawn just a preview of what it will spend most of its productive life experiencing as it strives to accomplish its raison d'Ítre.

Throughout the coming year, certain components will be removed or installed at times planned carefully to fit in the complex campaign to get Dawn safely to space. One simple example is the ion thrusters, the most salient part of the ion propulsion system.

Two of the three thrusters project from the spacecraft, and these precise and delicate devices could be damaged by the highly skilled - albeit human - workers who are performing other tasks on the spacecraft. So mock-ups with the same mass will be used during some of the tests.

For most of the tests, special sensors, such as contamination monitors or accelerometers, will be installed temporarily.

Between environmental tests and after the spacecraft is transported from one facility to another, CPTs or, in some cases, more limited performance tests (you guessed it - LPTs) will be conducted to aid in the assessment of the effects of the test on our robotic explorer.

When Dawn passes all of its tests, it will be rewarded in the same way many humans are: It will take a road trip to Florida for spring vacation.

Not far from the warm waters and sandy beaches of Cape Canaveral, Dawn will be given the final tests to verify that it was not harmed in shipment.

The ion propulsion system's xenon tank will be filled with 425 kilograms (937 pounds) of xenon, and the reaction control system (used to help rotate the spacecraft, but not to propel it to Vesta and Ceres) will be loaded with about 45 kilograms (100 pounds) of hydrazine propellant.

There will be flurry of other activity as well, as Dawn presents its last opportunity to be tested and readied for flight. Of course, the plan is for Dawn to leave Florida by a very different route from the one by which it arrived.

Dawn will have an exciting adventure after launch as it travels through the solar system, some of the time without company and some with Vesta or with Ceres, but its last trip around the Sun while still on its planet of origin will be no less busy.

Related Links
Dawn
Spacecraft details



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NASA Interstellar Boundary Explorer Mission Moves Ahead
San Antonio TX (SPX) May 29, 2006
Just as the Voyager 2 spacecraft is approaching the edge of our solar system, Southwest Research Institute received official confirmation from NASA Headquarters to proceed into the mission implementation phase for the Interstellar Boundary Explorer (IBEX) mission.







  • Voyager Data May Reveal Trajectory Of Solar System
  • A Voyage To The Edge Of Sol
  • Planetary Society Presents a New World to Congress
  • Hopkins Physics Lab To Build NASA's Radiation Belt Storm Probes

  • Opportunity Gets Dug Into Loose Soil Again
  • Spirit Continues Studies of Martian Winter Haven
  • Two APL-built Instruments Observe Recent Total Solar Eclipse
  • Atmospheric Study Shows Similarities In Solar Effects On Earth And Mars

  • SES Global Contracts Sea Launch For AMC-21 Satellite
  • Volvo Aero Components Powering Large Number Of Ariane 5 Launches
  • Heaviest Ariane 5 Payload Orbits Without A Hitch
  • Air Force Orders More Space Launches From Orbital

  • Ancient City Reveals Life In Desert 2,200 Years Ago
  • Commercial Remote Sensing Satellite Market Stabilizing
  • Digital Globe and Getty Images To Supply Satellite Images To News Media
  • Intermap Technologies Receives Radar Mapping Contract

  • Trio Of Neptunes And Their Belt
  • New Model Could Explain Eccentric Triton Orbit
  • New Horizons Taking Exploration To Edge Of Sol
  • Xena Poses A Bright Mystery

  • Dawn Team Looking Good For Launch Next Year
  • NASA Interstellar Boundary Explorer Mission Moves Ahead
  • Astrophysicists Discover 'Compact Jets' From Neutron Star
  • Stardust Analysis Update

  • Lunar Highlands And Mare Landscapes
  • Scientist Dreams Of Us Revisiting The Moon
  • NASA Lunar Orbiter Mission Moves To Next Step
  • China Likely To Launch Moon Probe Next April

  • QinetiQ Joins Galileo Development
  • Satelinx To Equip Seniors With Location Base Devices
  • LM And EADS Space To Team On NavSat Systems
  • European Galileo Satellite Program In Early Budget Over Run

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement