. 24/7 Space News .
TIME AND SPACE
Dark inflation opens up a gravitational window onto the first moments after the Big Bang
by Staff Writers
Warsaw, Poland (SPX) Jun 08, 2018

A comparison of the current inflation model of the evolution of the Universe to the dark inflation model recently proposed by scientists from the Faculty of Physics at the University of Warsaw. (Source: UW Physics) - Full size chart

Dark matter and dark energy may have driven inflation, the exponential expansion of the Universe moments after the Big Bang. A new cosmological model proposed by physicists at the University of Warsaw, which takes dark inflation into account, is the first to outline a precise chronology of the main events during the early history of our Universe. The model makes a spectacular prediction: that it should be possible to detect gravitational waves that were formed just fractions of a second after the creation of spacetime.

What do we know about the evolution of Universe immediately after the Big Bang? In spite of extensive research carried out over decades, current cosmological models still do not outline a precise chronology of events.

Researchers at the Faculty of Physics at the University of Warsaw (UW Physics) have developed a new model in which the exponential expansion of dark matter and dark energy plays a key role. The dark inflation model organises the thermal history of the Universe in chronological order and predicts that we should soon be able to detect primordial gravitational waves formed immediately after the Big Bang.

The earliest structure of the Universe we can study today is cosmic microwave background (CMB) radiation. This electromagnetic relic dates back to around 380,000 years after the Big Bang and is surprisingly homogenous, even in regions which are so far apart that light couldn't have covered the distance between them in the time available.

In 1979, Alan Guth proposed inflation as a simple explanation for this uniformity: the current vast distances between the homogenous regions are so great because at one time there was an extremely rapid expansion of spacetime, enlarging a billion billion billion times over in just fractions of a second. This is said to have been driven by a hypothetical inflation field and particles known as inflatons.

"The fundamental problem with inflation is that we don't really know when exactly it occurred and at what energy levels. The range of energies at which inflation could have occurred is vast, stretching over 70 orders of magnitude," explains Prof. Zygmunt Lalak (UW Physics). He adds, "Inflation is described as a period of supercooled expansion.

However, for cosmological models to be consistent, following inflation the Universe should have undergone reheating to a very high temperature, and we have no idea how or when this might have occurred. Just like with inflation itself, we are dealing with energies across a range of 70 orders of magnitude. As a result, the thermal history of the Universe is yet to be described."

Measurements of CMB radiation using the Planck satellite have been used to estimate the composition of the contemporary Universe. It turns out that dark energy comprises as much as 69% of all extant energy/matter, with dark matter comprising 26% and ordinary matter just 5%. Dark matter and ordinary matter don't interact at all, or their interactions are so weak we are only just starting to notice dark matter's gravitational impact on the movement of stars in galaxies and galaxies in clusters. Dark energy should be a factor responsible for the accelerated expansion of the Universe.

"Our inflation model is significantly different from those proposed in the past. We started with the assumption that since today dark matter and dark energy comprise up to 95% of the Universe's structure, then both factors must have also been extremely important immediately after the Big Bang.

This is why we describe the dark sector of the Universe as responsible for the inflation process," explains Dr. Michal Artymowski (UW Physics), main author of the paper published in the Journal of Cosmology and Astroparticle Physics.

In the model proposed by the theoretical physicists from the University of Warsaw, inflation is driven by a scalar field. The properties of the field mean that inflation isn't permanent and it must come to an end: at some point the rate of expansion of the Universe will start slowing down instead of accelerating.

At the point of this shift, new relativistic particles are formed, behaving in the same way as radiation. Some of these particles are described by the Standard Model, while others may correspond to particles predicted by theories beyond the Standard Model, such as supersymmetry.

"In our models, the new particles are the result of gravitation, which is a very weak force. The process of formation of particles is ineffective, and at the end of inflation inflatons continue to dominate the Universe," says Olga Czerwinska, PhD student at UW Physics.

In order to recreate the observed dominance of radiation in the Universe, inflatons should lose energy rapidly. The researchers propose two physical mechanisms which could be responsible for the process. They reveal that the new model predicts the course of events of the Universe's thermal history with a far greater accuracy than previously.

The model's predictions concerning primordial gravitational waves are especially interesting. Gravitational waves are vibrations of spacetime itself, and they have already been detected several times. In each case their source has been the merger of a pair of black holes or neutron stars. Current cosmological models predict that gravitational waves should also appear as a result of inflation.

However, all the evidence suggested that vibrations of spacetime caused by inflation would be so weak by now that no existing or future detectors would have been able to register them. These predications were revised when physicists from the University of Warsaw took into account the effects of the dark sector of the Universe.

"Gravitational waves lose energy as radiation. However, inflatons must lose it significantly faster. If inflation involved the dark sector, the input of gravitational waves increased proportionally. This means that traces of the primordial gravitational waves are not as weak as we originally thought!" adds Dr. Artymowski.

The estimates made by the Warsaw physicist are optimistic. Data suggests that primordial gravitational waves could be detected by observatories currently at the design stage or under construction, such as the Deci-Hertz Interferometer Gravitational Wave Observatory (DECIGO), Laser Interferometer Space Antenna (LISA), European Pulsar Timing Array (EPTA) and Square Kilometre Array (SKA).

The first events could be detected in the coming decade. For cosmologists this would be an unprecedented discovery, paving the way for research into gravitational events which took place immediately after the Big Bang - a period hitherto impossible to study.

The dark inflation model has another fascinating aspect: it is highly dependent on gravitational theory. By comparing the model's predictions with data collected by gravitational observatories, cosmologists should be able to provide new verifications of Einstein's general theory of relativity. What happens if they find discrepancies? It would mean that observational data provides the first information on the properties of real gravity.

Research Report: "Gravitational wave signals and cosmological consequences of gravitational reheating"


Related Links
Faculty of Physics University of Warsaw
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
ALMA finds oxygen 13.28 billion light-years away
Tokyo, Japan (SPX) May 17, 2018
Astronomers detected a faint but definite signal of oxygen in a galaxy located 13.28 billion light-years away from us, through observations using the Atacama Large Millimeter/submillimeter Array (ALMA). Breaking their own records, this marks the most distant oxygen ever detected in the Universe. Referencing infrared observations, the team determined that star formation in the galaxy started at an unexpectedly early stage; 250 million years after the Big Bang. "Rather than saying I was happy, it wo ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Second Space Station mission for Alexander Gerst begins

New Era of Space Exploration is "Internet of Tomorrow"

Crew from Germany, US, Russia board ISS

New crew blasts off for ISS

TIME AND SPACE
US Senate introduces measure to upgrade defense against hypersonic threats

First Engine Assembled for DARPA and Boeing Reusable Experimental Spaceplane

Lockheed Martin Wins Potential $928 Million Contract to Develop New Hypersonic Missile for the Air Force

Watch live: SpaceX to launch SES-12 communications satellite

TIME AND SPACE
Mars rover Opportunity hunkers down during dust storm

More building blocks of life found on Mars

Curiosity rover finds organic matter, unidentified methane source on Mars

NASA finds ancient organic material, mysterious methane on Mars

TIME AND SPACE
Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

China develops wireless systems for rockets

TIME AND SPACE
Liftoff as Alexander Gerst returns to space

Iridium Continues to Attract World Class Maritime Service Providers for Iridium CertusS

The European Space Agency welcomes European Commission's proposal on space activities

Spain's first astronaut named science minister

TIME AND SPACE
JUICE comes in from extreme temperature test

Cooling by laser beam

Large-scale and sustainable 3D printing with the most ubiquitous natural material

Engineers convert commonly discarded material into high-performance adhesive

TIME AND SPACE
Chandra Scouts Nearest Star System for Possible Hazards

Researchers discover multiple alkali metals in unique exoplanet

The Clarke exobelt, a method to search for possible extraterrestrial civilizations

Researchers discover a system with three Earth-sized planets

TIME AND SPACE
Juno Solves 39-Year Old Mystery of Jupiter Lightning

NASA Re-plans Juno's Jupiter Mission

New Horizons Wakes for Historic Kuiper Belt Flyby

Collective gravity, not Planet Nine, may explain the orbits of 'detached objects'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.