. 24/7 Space News .
TIME AND SPACE
DARPA making progress on miniaturized atomic clocks for future PNT applications
by Staff Writers
Washington DC (SPX) Aug 22, 2019

Figure 1. Schematic of the microfabricated photonic optical atomic clock developed by NIST, California Institute of Technology, Stanford University, and Charles Stark Draper Laboratories. Source: NIST

Many of today's communications, navigation, financial transaction, distributed cloud, and defense applications rely on the precision timing of atomic clocks - or clocks that track time based on the oscillation of atoms with the highest degrees of accuracy. Harnessing the power of atoms for precise timing requires a host of sophisticated and bulky technologies that are costly to develop and consume large amounts of energy.

New applications and technologies like 5G networks and GPS alternatives will require precise timekeeping on portable platforms, driving a demand for miniaturized atomic clocks with a high degree of performance.

Over the past few decades, DARPA has invested heavily in the advancement and miniaturization of atomic clock technology, generating chip-scale atomic clocks (CSACs) that are now commercially available and offer unprecedented timing stability for their size, weight, and power (SWaP).

However, the performance of these first-generation CSACs are fundamentally limited due to the physics associated with their designs. Calibration requirements and frequency drift can generate timing errors, making it difficult to achieve the highest degrees of accuracy and reliability in a portable package.

DARPA's Atomic Clock with Enhanced Stability (ACES) program is exploring the development of next-generation, battery-powered CSACs with 1000x improvement in key performance parameters over existing options.

"Shrinking atomic clocks from large cesium beam tubes to chip-scale devices without eroding performance requires a rethinking of a number of critical components, including vacuum pumps and optical isolators as well as new approaches to component integration," said Dr. John Burke, the program manager leading ACES in DARPA's Microsystems Technology Office (MTO).

"The target metrics we outlined for the ACES program are lofty, but as we enter the third phase of the program, researchers are already demonstrating engineering successes including reduced SWaP, lab-proven atomic clock technologies, as well as early prototypes of future clock architectures."

Through the exploration of alternative physics architectures and novel component technologies, three sets of researchers have demonstrated early progress towards creating CSACs with 1000x improvement in temperature control, aging, and retrace.

A paper recently published in Optica highlights recent progress made by a team of researchers from the National Institute of Standards and Technology (NIST), with support from researchers at the California Institute of Technology, Stanford University, and Charles Stark Draper Laboratories.

The team has demonstrated an experimental optical atomic clock that is comprised of only three small chips and supporting electronics and optics. Unlike standard atom clocks that operate at microwave frequencies and track the vibrations of cesium atoms, optical atomic clocks run at higher frequencies, offering greater precision because they divide time into smaller units.

The NIST team's clock uses a laser to track the oscillations of rubidium atoms confined in a vapor cell - or tiny glass container - that is 3 millimeters across sitting on top of a silicon chip. Within the clock's chip-based "heart," two frequency combs act like gears to convert the rubidium atoms' high-frequency optical "ticks" to the lower microwave frequency, which is used by most PNT applications to track time.

In addition to providing a higher-degree of accuracy (roughly 50 times better than the current cesium-based CSACs), the experimental clock uses very little power - just 275 milliwatts.

In addition to successfully demonstrating a chip-scale optical clock, the NIST team was able to microfabricate all of the key components, much in the same way that computer chips are fabricated. This enables further integration of the electronics and optics while creating a potential path towards mass production and commercialization.

A second team of researchers from Honeywell, working in partnership with University of California, Santa Barbara, is developing precision atomic sensors to support the development of a miniature atomic clock.

To date, the miniaturization of trapped-atom sensors has been stymied by bulk optical elements - such as lenses and mirrors - that traditionally compose the necessary optical system. The precision atomic sensors the Honeywell team has developed rely on a magneto-optic trap (MOT), which requires a three-dimensional arrangement of laser beams coming from different directions, precisely crossing at a point.

To achieve this precise configuration without the use of lenses or mirrors, the researchers developed an integrated photonic chip that guides light around an "optical circuit" - which is analogous to the guiding of electrical signals in traditional computer chips.

The photonic chip emits three large collimated beams of light in the proper three-dimensional arrangement to make a MOT. By combining these intersecting laser beams with a specialized set of compact magnetic field coils, Honeywell used this light source to trap rubidium atoms, and realize an advanced, miniature atomic clock.

Honeywell's integrated photonic chip technology not only reduces the size, weight, and power of laser delivery systems, but also allows for batch fabrication of complex optical systems with reduced manufacturing cost.

Finally, a team from NASA's Jet Propulsion Laboratory (JPL), with support from researchers at SRI International; University of California, Davis; and University of Illinois Urbana-Champaign, has demonstrated an experimental atomic clock capable of meeting ACES' target metrics, while proving immune to temperature and environmental issues.

Building off research that created the Deep Space Atomic Clock (DSAC), the team developed an ion-based approach to atom cooling that relies on ionized mercury and ultraviolet lamps instead of lasers.

The JPL atomic clock showed an immunity of less than 1 part in 14 decimal places for 1 degree Celsius change. To put that in perspective, that is about 100x better than current CSACs. The use of mercury ions also provides more stability while making the technology less sensitive to magnetic fields and temperature changes.

As evidenced by the NIST and Honeywell research, progress on the ACES program is generating new means of fabricating atomic clock technologies at wafer scale, which makes continued exploration more cost effective and less reliant on massive engineering endeavors.

"Today, we are dealing with complicated optical systems that require massive amounts of engineering whenever you want to iterate on a design. The early progress made on ACES shows that there are viable options in development for doing this same thing without the massive engineering manpower or hefty costs associated with current approaches," noted Burke.

Research paper


Related Links
Defense Advanced Research Projects Agency
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
What is an atomic clock?
Pasadena CA (JPL) Jun 21, 2019
The clock is ticking: A technology demonstration that could transform the way humans explore space is nearing its target launch date of June 24, 2019. Developed by NASA's Jet Propulsion Laboratory in Pasadena, California, the Deep Space Atomic Clock is a serious upgrade to the satellite-based atomic clocks that, for example, enable the GPS on your phone. Ultimately, this new technology could make spacecraft navigation to distant locations like Mars more autonomous. But what is an atomic clock? How ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
India not poor, has resources for space program says ISRO chief

Company Claims Orbital Hotel to Host 400 Space Tourists Will Be Operational By 2025

Europe Unlikely to Abandon Soyuz Once US Revives Space Shuttles - German Space Center

No-fly boys: new Russian space suit clashes with pee ritual

TIME AND SPACE
China's first medium-scale launcher with LOX LCH4 propellants ZQ-2 soliciting payloads worldwide

Arianespace will launch Ovzon-3 satellite

NASA prepares for green run testing, practices lifting SLS Core Stage

Russia Launches Rokot Space Rocket to Orbit Military Satellite

TIME AND SPACE
ESA Chief says discussed ExoMars 2020 launch with Roscosmos

NASA engineers attach Mars Helicopter to Mars 2020 rover

NASA Invites Students to Name Next Mars Rover

NASA's Mars Helicopter Attached to Mars 2020 Rover

TIME AND SPACE
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

TIME AND SPACE
Cutting-edge Chinese satellite malfunctions after launch

Private Chinese firms tapping international space market

ESA and GomSpace Luxembourg sign contract for continued constellation management development

New Iridium Certus transceiver for faster satellite data now in live testing

TIME AND SPACE
Russia says radioactive isotopes released by missile test blast

China's Tianhe-2 Supercomputer to Crunch Space Data From New Radio Telescope

Chipping away at how ice forms could keep windshields, power lines ice-free

In NASA Glenn's Virtual Reality Lab, Creative-Minded Employees Thrive

TIME AND SPACE
Exoplanets Can't Hide Their Secrets from Innovative New Instrument

Deep-sea sediments reveal solar system chaos: An advance in dating geologic archives

Hints of a volcanically active exomoon

Canadian astronomers determine Earth's fingerprint

TIME AND SPACE
Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms

Young Jupiter was smacked head-on by massive newborn planet

Mission to Jupiter's icy moon confirmed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.