Subscribe free to our newsletters via your
. 24/7 Space News .




SHAKE AND BLOW
Crystals point to 'recycled' super-volcanic magma chambers
by Staff Writers
Eugene OR (SPX) Oct 15, 2013


University of Oregon geologist Ilya Bindeman, left, and graduate student Dana Drew, working in Bindeman's stable isotope laboratory say that the composition of zircon bits in igneous rocks in the Yellowstone hotspot track tell a new story on how super volcanoes recycle magma. Credit: University of Oregon.

A thorough examination of tiny crystals of zircon, a mineral found in rhyolites, an igneous rock, from the Snake River Plain has solidified evidence for a new way of looking at the life cycle of super-volcanic eruptions in the long track of the Yellowstone hotspot, say University of Oregon scientists.

The pattern emerging from new and previous research completed in the last five years under a National Science Foundation career award, said UO geologist Ilya N. Bindeman, is that another super-eruption from the still-alive Yellowstone volcanic field is less likely for the next few million years than previously thought. The last eruption 640,000 years ago created the Yellowstone Caldera and the Lava Creek Tuff in what is now Yellowstone National Park.

The Yellowstone hotspot creates a conveyor belt style of volcanism because of the southwest migration of the North American plate at 2-4 centimeters (about .8 to 1.6 inches) annually over the last 16 million years of volcanism. Due to the movement of the North American plate, the plume interaction with the crust leaves footprints in the form of caldera clusters, in what is now the Snake River Plain, Bindeman said.

The Picabo volcanic field of southern Idaho, described in a new paper by a six-member team, was active between 10.4 and 6.6 million years ago and experienced at least three, and maybe as many as six, violent caldera-forming eruptions. The field has been difficult to assess, said lead author Dana Drew, a UO graduate student, because the calderas have been buried by as much as two kilometers of basalt since its eruption cycle died.

The work at Picabo is detailed in a paper online ahead of publication in the journal Earth and Planetary Science Letters.

The team theorized that basalt from the mantle plume, rocks from Earth's crust and previously erupted volcanoes are melted together to form the rhyolites erupted in the Snake River Plain. Before each eruption, rhyolite magma is stored in dispersed pockets throughout the upper crust, which are later mixed together, according to geochemical evidence. "We think that this batch-assembly process is an important part of caldera-forming eruptions, and generating rhyolites in general," Drew said.

In reaching their conclusions, Drew and colleagues analyzed radiogenic and stable isotopic data -- specifically oxygen and hafnium -- in zircons detected in rhyolites found at the margins of the Picabo field and from a deep borehole. That data, in combination with whole rock geochemistry and zircon uranium-lead geochronology helped provide a framework to understand the region's ancient volcanic past.

Previous research on the related Heise volcanic field east of Picabo yielded similar results. "There is a growing database of the geochemistry of rhyolites in the Yellowstone hotspot track," Drew said. "Adding Picabo provides a missing link in the database.

Drew and colleagues, through their oxygen isotope analyses, identified a wide diversity of oxygen ratios occurring in erupted zircons near the end of the Picabo volcanic cycle. Such oxygen ratios are referred to as delta-O-18 signatures based on oxygen 18 levels relative to seawater. (Oxygen 18 contains eight protons and 10 neutrons; Oxygen 16, with eight protons and eight neutrons, is the most commonly found form of oxygen in nature)

The approach provided a glimpse into the connection of surface and subsurface processes at a caldera cluster. The interaction of erupted rhyolite with groundwater and surface water causes hydrothermal alteration and the change in oxygen isotopes, thereby providing a fingerprinting tool for the level of hydrothermal alteration, Drew said.

"Through the eruptive sequence, we begin to generate lower delta-O-18 signatures of the magmas and, with that, we also see a more diverse signature," Drew said. "By the time of the final eruption there is up to five per mil diversity in the signature recorded in the zircons."

The team attributes these signatures to the mixing of diverse magma batches dispersed in the upper crust, which were formed by melting variably hydrothermally altered rocks -- thus diverse delta-O-18 -- after repeated formation of calderas and regional extension or stretching of the crust.

When the pockets of melt are rapidly assembled, the process could be the trigger for caldera forming eruptions, Bindeman said. "That leads to a homogenized magma, but in a way that preserves these zircons of different signatures from the individual pockets of melt," he said. This research, he added, highlights the importance of using new micro-analytical isotopic techniques to relate geochemistry at the crystal-scale to processes occurring at the crustal-wide scale in generating and predicting large-volume rhyolitic eruptions.

"This important research by Dr. Bindeman and his team demonstrates the enormous impact an NSF CAREER award can have," said Kimberly Andrews Espy, vice president for research and innovation and dean of the graduate school at the University of Oregon. "The five-year project is providing new insights into the eruption cycles of the Yellowstone hotspot and helping scientists to better predict future volcanic activity."

The four co-authors with Bindeman and Drew on the new paper were: Kathryn E. Watts, who earned a doctorate in geology from the UO in 2011 and now is the Mendenhall Postdoctoral Research Fellow at the U.S. Geological Survey, Menlo Park, Calif.; Axel K. Schmitt of the University of California, Los Angeles; Bin Fu of the Australian National University, Canberra; and Michael McCurry of Idaho State University.

.


Related Links
University of Oregon
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SHAKE AND BLOW
3D model reveals new information about iconic volcano
Uppsala, Sweden (SPX) Oct 15, 2013
The volcano on the Scottish peninsula Ardnamurchan is a popular place for the study of rocks and structures in the core of a volcano. Geology students read about it in text books and geologists have been certain that the Ardnamurchan volcano have three successive magma chambers. However, an international group of researchers, lead from Uppsala University, Sweden, has now showed that the volcano ... read more


SHAKE AND BLOW
China unveils its first and unnamed moon rover

Mission to moon will boost research and awareness

Mighty Eagle Improves Autonomous Landing Software With Successful Flight

Watch Out for the Harvest Moon

SHAKE AND BLOW
NASA Mars mission escapes government shutdown, will launch

European rover meant for Mars to undergo earthly desert test

First ARCA flight in the ExoMars Program completed successfully

A Seasonal Ozone Layer Over The Martian South Pole

SHAKE AND BLOW
Samsung to break ground at US research center

Non-Orbiting Space Junk

Paper written as science hoax published by 157 science journals

Tokyo gadget show offers glimpse of tomorrow

SHAKE AND BLOW
Onward and upward as China marks 10 years of manned spaceflight

Chinese VP stresses peaceful use of space

China's space station to open for foreign peers

Last Days for Tiangong

SHAKE AND BLOW
Aerojet Rocketdyne Thrusters Help Cygnus Spacecraft Berth at the International Space Station

First CASIS Funded Payloads Berthed to the ISS

Unmanned cargo ship docks with orbiting Space Station

New space crew joins ISS on Olympic torch mission

SHAKE AND BLOW
Spaceport Colorado and S3 Sign Memorandum of Understanding

Milky Way-mapping Gaia receives its sunshield

Arianespace's next Ariane 5 mission will serve two key customers: SES and HISPASAT

After Successful Spacecraft Docking, US Orbits Five Satellites

SHAKE AND BLOW
Blurring the lines between stars and planets

Kepler Finds First Signs of Other Earths

Nearby binary star system gets officially confirmed third member

Astronomers create first cloud map of distant planet

SHAKE AND BLOW
A thermoelectric materials emulator

Lockheed Martin and Concord Blue to Deploy Advanced Gasification Technology Globally

Lockheed Martin Powers on First GOES-R Weather Satellite

How to make ceramics that bend without breaking




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement