. 24/7 Space News .
CARBON WORLDS
Crystallization method offers new option for carbon capture from ambient air
by Staff Writers
Oak Ridge TN (SPX) Jan 10, 2017


When an aqueous solution of a simple guanidine compound was open to air, beautiful prism-like crystals started to form as the material absorbed carbon dioxide. Image courtesy Oak Ridge National Laboratory/Genevieve Martin. For a larger version of this image please go here.

Scientists at the Department of Energy's Oak Ridge National Laboratory have found a simple, reliable process to capture carbon dioxide directly from ambient air, offering a new option for carbon capture and storage strategies to combat global warming.

Initially, the ORNL team was studying methods to remove environmental contaminants such as sulfate, chromate or phosphate from water. To remove those negatively charged ions, the researchers synthesized a simple compound known as guanidine designed to bind strongly to the contaminants and form insoluble crystals that are easily separated from water.

In the process, they discovered a method to capture and release carbon dioxide that requires minimal energy and chemical input. Their results are published in the journal Angewandte Chemie International Edition.

"When we left an aqueous solution of the guanidine open to air, beautiful prism-like crystals started to form," ORNL's Radu Custelcean said. "After analyzing their structure by X-ray diffraction, we were surprised to find the crystals contained carbonate, which forms when carbon dioxide from air reacts with water."

Decades of research has led to the development of carbon capture and long-term storage strategies to lessen the output or remove power plants' emissions of carbon dioxide, a heat-trapping greenhouse gas contributing to a global rise in temperatures.

Carbon capture and storage strategies comprise an integrated system of technologies that collects carbon dioxide from the point of release or directly from the air, then transports and stores it at designated locations.

A less traditional method that absorbs carbon dioxide already present in the atmosphere, called direct air capture, is the focus of ORNL's research described in this paper, although it could also be used at the point where carbon dioxide is emitted.

Once carbon dioxide is captured, it needs to be released from the compound so the gas can be transported, usually through a pipeline, and injected deep underground for storage. Traditional direct air capture materials must be heated up to 900 degrees Celsius to release the gas - a process that often emits more carbon dioxide than initially removed. The ORNL-developed guanidine material offers a less energy-intensive alternative.

"Through our process, we were able to release the bound carbon dioxide by heating the crystals at 80-120 degrees Celsius, which is relatively mild when compared with current methods," Custelcean said. After heating, the crystals reverted to the original guanidine material. The recovered compound was recycled through three consecutive carbon capture and release cycles.

While the direct air capture method is gaining traction, according to Custelcean, the process needs to be further developed and aggressively implemented to be effective in combatting global warming. Also, they need to gain a better understanding of the guanidine material and how it could benefit existing and future carbon capture and storage applications.

The research team is now studying the material's crystalline structure and properties with the unique neutron scattering capabilities at ORNL's Spallation Neutron Source (SNS), a DOE Office of Science User Facility. By analyzing carbonate binding in the crystals, they hope to better understand the molecular mechanism of carbon dioxide capture and release and help design the next generation of sorbents.

The scientists also plan to evaluate the use of solar energy as a sustainable heat source to release the bound carbon dioxide from the crystals.

Research paper: "CO2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent"


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oak Ridge National Laboratory
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Diamonds are technologists' best friends
Moscow, Russia (SPX) Jan 03, 2017
Physicists from the Lomonosov Moscow State University have obtained diamond crystals in the form of a regular pyramid of micrometer size. Moreover, in cooperation with co-workers from other Russian and foreign research centers they have also studied the luminescence and electron emission properties of obtained diamond crystals. The research results have been represented in a serie of articles pu ... read more


CARBON WORLDS
Tech show looks beyond 'smart,' to new 'realities'

Tech outlook dampened by political uncertainty

Space station battery replacements to begin New Year's Eve

Launch of Russia's new progress spacecraft set for February 2

CARBON WORLDS
Mission contracts secure Commercial Crew operations for coming years

SpaceX ready to launch again

India to develop large scale solid fuel mixer

Russia won't be leaving Baikonur anytime soon

CARBON WORLDS
3-D images reveal features of Martian polar ice caps

Odyssey recovering from precautionary pause in activity

Small Troughs Growing on Mars May Become 'Spiders'

All eyes on Trump over Mars

CARBON WORLDS
Beijing's space program soars in 2016

China Plans to Launch 1st Mars Probe by 2020 - State Council Information Office

China to expand int'l cooperation on space sciences

China sees rapid development of space science and technology

CARBON WORLDS
Airbus DS and Energia eye new medium-class satellite platform

Space as a Driver for Socio-Economic Sustainable Development

SoftBank delivers first $1 bn of Trump pledge, to space firm

Intel acquires ESA incubator company

CARBON WORLDS
Rice U probes ways to turn cement's weakness to strength

Au naturel catalyst mimics nature to break tenacious carbon-hydrogen bond

MIT scientists create super strong, lightweight 3D graphene

Responsive filtration membranes by polymer self-assembly

CARBON WORLDS
The blob can learn and teach

Searching a sea of 'noise' to find exoplanets - using only data as a guide

Microlensing Study Suggests Most Common Outer Planets Likely Neptune-mass

Exciting new creatures discovered on ocean floor

CARBON WORLDS
Exploring Pluto and the Wild Back Yonder

Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.