. 24/7 Space News .
STELLAR CHEMISTRY
Cosmic cat and mouse: Astronomers capture and tag a fleeting radio burst
by Staff Writers
Hilo HI (SPX) Jun 28, 2019

file illustration only

An Australian-led team of astronomers using the Gemini South telescope in Chile have successfully confirmed the distance to a galaxy hosting an intense radio burst that flashed only once and lasted but a thousandth of a second. The team made the initial discovery of the fast radio burst (FRB) using the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope.

The critical Gemini observations were key to verifying that the burst left its host galaxy some 4 billion years ago.

Since the first FRB discovery in 2007, these mysterious objects have played a game of cosmic cat-and-mouse with astronomers - with astronomers as the sharp-eyed cats! Fleeting radio outbursts, lasting about a millisecond (one-thousandth of one second), are difficult to detect, and even more difficult to locate precisely. In this case, the FRB, known as FRB 180924, was a single burst, unlike others that can flash multiple times over an extended period.

"It is especially challenging to pinpoint FRBs that only flash once and are gone," said Keith Bannister of Australia's Commonwealth Science and Industrial Research Organisation (CSIRO), who led the Australian team in the search effort. However, Bannister and his team did just that, which is a first.

The momentary pulse was first spotted in September 2018 during a dedicated search for FRBs using ASKAP - a 36-antenna array of radio telescopes working together as a single instrument in Western Australia - which also pinpointed the signal's location in the sky.

The researchers used the miniscule differences in the amount of time it takes for the light to reach different antennas in the array to zoom in on the host galaxy's location. "From these tiny time differences - just a fraction of a billionth of a second - we identified the burst's home galaxy," said team member Adam Deller, of Swinburne University of Technology.

Once pinpointed, the team enlisted the Gemini South telescope, along with the W.M. Keck Observatory and European Southern Observatory's Very Large Telescope (VLT) to determine the FRB's distance and other characteristics by carefully observing the galaxy that hosted the outburst.

"The Gemini South data absolutely confirmed that the light left the galaxy about 4 billion years ago," said Nicolas Tejos of Pontificia Universidad Catolica de Valparaiso, who led the Gemini observations.

"ASKAP gave us the two-dimensional position in the sky, but the Gemini, Keck, and VLT observations locked down the distance, which completes the three-dimensional picture," said Tejos.

"When we managed to get a position for FRB 180924 that was good to 0.1 arcsecond, we knew that it would tell us not just which object was the host galaxy, but also where within the host galaxy it occurred," said Deller. "We found that the FRB was located away from the galaxy's core, out in the 'galactic suburbs.'"

"The Gemini telescopes were designed with observations like this in mind," said Ralph Gaume, Deputy Division Director of the US National Science Foundation (NSF) Division of Astronomical Sciences, which provides funding for the US portion of the Gemini Observatory international partnership. Knowing where an FRB occurs in a galaxy of this type is important because it enables astronomers to get some hint of what the FRB progenitor might have been.

"And for that," Gaume continues, "we need images and spectroscopy with superior image quality and depth, which is why Gemini and the optical and infrared observatory observations in this study were so important."

Localizing FRBs is critical to understanding what causes the flashes, which is still uncertain: to explain the high energies and short timescales, most theories invoke the presence of a massive yet very compact object such as a black hole or a highly magnetic neutron star. Finding where the bursts occur would tell us whether it is the formation, evolution, or collision and destruction of these objects that is generating the radio bursts."

"Much like gamma-ray bursts two decades ago, or the more recent detection of gravitational wave events, we stand on the cusp of an exciting new era where we are about to learn where fast radio bursts take place," said team member Stuart Ryder of Macquarie University, Australia. Ryder also noted that by knowing where within a galaxy FRBs occur, astronomers hope to learn more about what causes them, or at least rule out some of the many models.

"Ultimately though," Ryder continued, "our goal is to use FRBs as cosmological probes, in much the same way that we use gamma ray bursts, quasars, and supernovae." According to Ryder, such a map could pinpoint the location of the 'missing baryons,' (baryons are the subatomic building blocks of matter) which standard models predict must be out there, but which don't show up using other probes.

By pinpointing the bursts and how far their light has traveled, astronomers can also obtain "core samples" of the intervening material between us and the flashes. With a large sample of FRB host galaxies, astronomers could conduct "cosmic tomography,"' to build the first 3D map of where baryons are located between galaxies. On that note Tejos added, "once we have a large sample of FRBs with known distances, we will also have a revolutionary new method for measuring the amount of matter in the cosmic web!"

To date, only one other fast radio burst (FRB 121102) has been localized, and it had a repeating signal that flashed more than 150 times, While both single and multiple flash FRBs are relatively rare, single FRBs are more common than repeating ones. The discovery of FRB 180924, then, could lead the way for future methods of localization.

"Fast turnaround follow-up contributions from Gemini Observatory will be especially significant in the future of time-domain astronomy," Tejos said, "as it promises not only to help astronomers perfect the study of transient phenomena, but perhaps alter our perceptions of the Universe."

The result is published in the June 27th issue of the journal Science.


Related Links
Association of Universities for Research in Astronomy (AURA)
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Astronomers make first detection of polarized radio waves in gamma ray burst jets
Bath UK (SPX) Jun 21, 2019
Good fortune and cutting-edge scientific equipment have allowed scientists to observe a Gamma Ray Burst jet with a radio telescope and detect the polarisation of radio waves within it for the first time - moving us closer to an understanding of what causes the universe's most powerful explosions. Gamma Ray Bursts (GRBs) are the most energetic explosions in the universe, beaming out mighty jets which travel through space at over 99.9% the speed of light, as a star much more massive than our sun col ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Soyuz capsule safely returns three space station crew members to Earth

Planetary Society's LightSail 2 Launched by Falcon Heavy

Hacker used $35 computer to steal restricted NASA data

Russian, North American astronauts return to earth

STELLAR CHEMISTRY
Ariane 5 launches T-16 and EUTELSAT 7C satellites

GREEN propellant infusion mission to test AFRL-developed green propellant

Swedish Space Corporation to introduce a new service for easy access to space

Raytheon, Northrop Grumman partner on hypersonic missile system

STELLAR CHEMISTRY
Life on Mars Was Possible After Last Great Meteorite Impact

Experiments with salt-tolerant bacteria in brine have implications for life on Mars

Curiosity detects unusually high methane levels

A Rover for Phobos and Deimos

STELLAR CHEMISTRY
Luokung and Land Space to develop control system for space and ground assets

Yaogan-33 launch fails in north China, Possible debris recovered in Laos

China develops new-generation rockets for upcoming missions

China's satellite navigation industry sees rapid development

STELLAR CHEMISTRY
All-alectric Maxar 1300-Class comsat delivers broadcast services for Eutelsat customers

Israeli space tech firm hiSky expands to the UK

Newtec collaborates with QinetiQ, marking move into space sector

RBC Signals awarded SBIR Phase I contract by US Air Force

STELLAR CHEMISTRY
Machine Learning Tool Searches Star Data for Likely Exoplanet Hosts

Researchers see around corners to detect object shapes

ESA awards Siemens and Sonaca contract to design new additive manufacturing applications

AFRL produces lighter, thinner transparent armor

STELLAR CHEMISTRY
ALMA Pinpoints Formation Site of Planet Around Nearest Young Star

Planet Seeding and Panspermia

View of the Earth in front of the Sun

Most Comprehensive Search for Radio Technosignatures

STELLAR CHEMISTRY
Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings

Table salt compound spotted on Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.