. 24/7 Space News .
TIME AND SPACE
Controlled nuclear transition will make clocks hugely more precise than atomic ones
by Staff Writers
Moscow, Russia (SPX) Apr 25, 2018

illustration only

A Russian scientist from Skobelitsyn Research Institute of Nuclear Physics, MSU theoretically substantiated that the speed of transition of thorium-229 from ground to excited state may be managed depending on external conditions. The frequency of transitions may be increased or decreased by dozens of times. This effect will help create extremely precise clocks exceeding even the best atomic ones. The article was published in Physical Review Letters journal.

The most precise modern clocks are atomic ones in which time is registered on the basis of electron transition between energy levels. Recently scientists suggested switching from electron to nuclear transitions that may considerably increase the precision of clocks due to higher frequency.

However, in the majority of cases this frequency and corresponding energy are too high for the method to be applied. The main candidate to be used in such clocks is the nucleus of thorium-229.

Its low-energy transitions are unique and lead to the emanation of an UV-spectrum photon. The work with nuclei is complicated due to internal conversion that causes the energy released in the course of nuclear transition to be transferred to one of the electrones and not released as a photon.

The probability of an electron gaining energy instead of its transition to a photon in a thorium-229 atom is a billion times higher. However, if the atom is placed in a crystal with a wide band gap, the situation changes.

"My idea is that in a crystal electronic sheath may be completely rearranged, allowing us to observe nuclear radiation without conversion," - explained the author of the work Evgeny Tkalya from RINP, MSU.

In his new work he theoretically reviewed the transitions of a thorium-229 nucleus in a crystal with the whole system covered with an isolator, a thin dielectric film, or metal.

The author concluded that spontaneous emission can be controlled if the nucleus is placed within such bodies. This phenomenon is well-known for optic electron transitions and is called Purcell effect. Analysis has shown that the cover, depending on its size and properties, may change the transition speed up to 50 times. This process is specifically interesting in clocks, as the emission line becomes narrower as well allowing the mechanisms to keep time more accurately.

"This may increase the precision by an order of magnitude compared to thorium-based clocks that do not take this effect into account," - said the scientist. "Using these additional physical phenomena, we may reach relative precision over 10-20."

The main issue that hinders the development of a nuclear clock prototype is the lack of knowledge about transition energy. Currently the inaccuracy of measurements for this value is tenths of electron-volt (eV), and to efficiently excite the nuclei with external radiation, the inaccuracy should be reduced to the level of the exciting laser line width (about 10-5 eV).

The scientist also shared the results of experiments carried out by a group of researchers at MEPhI showing that the radiation can be controlled and proving theoretical provisions of his work.

Research paper


Related Links
Lomonosov Moscow State University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
En route to the optical nuclear clock
Munich, Germany (SPX) Apr 19, 2018
The nucleus of thorium-229 possesses a property that is unique among all known nuclides: It should be possible to excite it with ultraviolet light. To date, little has been known about the low-energy state of the Th-229 nucleus that is responsible for this property. Together with their colleagues from Munich and Mainz, researchers at the Physikalisch-Technische Bundesanstalt (PTB) have now performed the first-ever measurements - using optical methods - of some important properties of this nuclear ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Cosmonautics demonstrates how US, Russia should work together

NASA's New Space 'Botanist' Arrives at Launch Site

Philippines to deploy riot police for Boracay tourist closure

Top tomatoes thanks to Mars missions

TIME AND SPACE
Lockheed awarded $928M for hypersonic strike weapon

ULA Atlas V launch to feature full complement of Aerojet Rocketdyne solid rocket boosters

RL10 Selected for OmegA Rocket

ISRO not facing funds crunch: Chairman K.Sivan

TIME AND SPACE
SwRI's Martian moons model indicates formation following large impact

US, Russia likely to go to Mars Together, former NASA astronaut says

NASA scientist to discuss 'Swimming in Martian Lakes: Curiosity at Gale Crater'

Trace Gas Orbiter reaches stable Mars orbit, ready to start science mission

TIME AND SPACE
The Long Game: China Seeks to Transfer Its Silk Industry to Far Side of the Moon

China to launch Long March-5 Y3 rocket in late 2018

Flowers on the Moon? China's Chang'e-4 to launch lunar spring

China's 'space dream': A Long March to the moon

TIME AND SPACE
Airbus has shipped SES-12 highly innovative satellite to launch base

Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

TIME AND SPACE
Invertebrates inspire first fully 3-D printed active materials for robots

Study recommends strong role for national labs in 'second laser revolution'

Rare earth magnet recycling is a grind - this new process takes a simpler approach

Artificial intelligence accelerates discovery of metallic glass

TIME AND SPACE
Are we alone? NASA's new planet hunter aims to find out

We think we're the first advanced earthlings - but how do we really know?

Newly discovered salty subglacial lakes could help search for life in solar system

SPHERE Reveals Fascinating Zoo of Discs Around Young Stars

TIME AND SPACE
Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

Juno Provides Infrared Tour of Jupiter's North Pole

SSL to provide of critical capabilities for Europa Flyby Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.