. 24/7 Space News .
TECTONICS
Continental interiors may not be as tectonically stable as geologists think
by Staff Writers
Champaign IL (SPX) Feb 21, 2018

Cratonic lithosphere with a high-density root undergoes delamination when perturbed by mantle plumes from beneath. The removed cratonic root then thermally grows back, with its rock fabrics preserving recent mantle deformation.

A University of Illinois-led team has identified unexpected geophysical signals underneath tectonically stable interiors of South America and Africa. The data suggest that geologic activity within stable portions of Earth's uppermost layer may have occurred more recently than previously believed. The findings, published in Nature Geoscience, challenge some of today's leading theories regarding plate tectonics.

The most ancient rocks on Earth are located within continental interiors, far from active tectonic boundaries where rocks recycle back into the planet's interior. These strong, buoyant and deeply rooted blocks of Earth, called cratons, have been drifting on the surface for billions of years, seemingly undisturbed. They occasionally join and break apart along their edges in a dance called the supercontinent cycle.

"We usually think of cratons as being cold, stable and low-elevation," said professor of geology and study co-author Lijun Liu. "Cold because the rocks are far above the hot mantle layers, stable because their crusts have not been disturbed significantly by faulting or deformation, and their low elevation is because they have been sitting there, eroding down for billions of years."

However, there are places where cratons don't follow these rules.

"For example, there are regions of high topography within the cratons of South America and Africa," said graduate student and lead author Jiashun Hu. The researchers processed geophysical data with the Blue Waters supercomputer at the National Center for Supercomputing Applications at Illinois hoping to better understand these high-elevation regions. The thick roots of cratons have been thought to be buoyant due to their low-density mineral content, allowing them to float on top of the hot underlying mantle. However, the new data indicate that the cold mantle that lies below these regions in South America and Africa - once joined as part of the supercontinent Pangea - has a layered structure and that the lower layer was more dense in the past than it is today, Liu said.

This density difference could be the result of a process called mantle delamination. During delamination, the denser lower mantle layer peels away from the buoyant upper layer under the crust of the craton after interacting with hot magma from mantle plumes, the researchers said.

"From several types of seismic imaging data, we can see what we think are delaminated mantle slabs sinking into the hot, viscous deep mantle," Liu said.

"The material that subsequently grows back at the roots of the cratons after delamination, due to cooling from above, is probably compositionally much less dense than what was there before," said geology professor Craig Lundstrom. "That adds buoyancy, and that force from buoyancy could be what forms the anomalously high topography."

This multidisciplinary study is beginning to give the team a very logical - albeit complicated - update on the story of Earth's tectonic history, the researchers said.

"The high topography of Africa and South America is only part of the story," Hu said. "There are many geologic phenomena such as the location of hotspot trajectories, continental volcanism, surface uplift and erosion, as well as seismically imaged deformation within the craton roots that all seem to correlate well with the proposed delamination event, implying a potential causal relationship."

There is also evidence to support other locations of craton-plume interaction during other times in Earth's history.

"The rock record shows that uplift and erosion events have taken place during previous supercontinent cycles," said geology professor and School of Earth, Society and Environment director Stephen Marshak. "A related study discusses what might be a similar event, namely continental uplift possibly related to delamination of cratonic lithosphere that caused the period of global erosion resulting in the Great Unconformity, which is the contact between Precambrian basement rock and Paleozoic sedimentary strata."

For now, it is not clear if and how craton-plume interaction may affect modern-day earthquake activity and volcanism in areas thought of as geologically inactive. However, the study marks new thinking in how geologists may understand the so-called stable cratons.

Research Report: "Modification of the Western Gondwana craton by plume-lithosphere interaction"


Related Links
University of Illinois at Urbana-Champaign
Tectonic Science and News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECTONICS
Study: Tectonic plates of continental interiors are less stable than previously thought
Washington (UPI) Feb 20, 2018
The chance of a major earthquake in America's heartland remains extremely low, but new research suggests continental interiors aren't as tectonically stable as geologists thought. Scientists recently discovered unusual signals of geologic activity under the tectonically stable interiors of South America and Africa. Their investigation of this activity suggests ancient continental rocks don't always behave as expected. In their attempt to explain the unexpected geologic signals, scientist ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
Russian Resupply Ship Delivers Three Tons of Cargo

NASA's Continued Focus on Returning U.S. Human Spaceflight Launches

NASA Acting Administrator's Statement on FY 2019 Budget Proposal

US wants to privatize International Space Station: report

TECTONICS
140 successful tests and several "firsts" for Vinci, the engine for Ariane 6

Russia launches cargo spacecraft after aborted liftoff

Soyuz launch to resupply ISS aborted seconds before liftoff

What's next for SpaceX?

TECTONICS
Leaky Atmosphere Linked To Lightweight Planet

Mars Opportunity Rover Energy Levels Improve

A Piece of Mars is Going Home

Danish architect envisions life on Mars

TECTONICS
Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

TECTONICS
Airbus and human spaceflight: from Spacelab to Orion

Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

UK companies seek cooperation with Russia in space technologies

TECTONICS
Why bees soared and slime flopped as inspirations for systems engineering

Breaking local symmetry: Why water freezes but silica forms a glass

Friction found where there should be none: In superfluids near absolute zero

Last NASA Communications Satellite of its Kind Joins Fleet

TECTONICS
Asteroid 'time capsules' may help explain how life started on Earth

Deep-sea fish use hydrothermal vents to incubate eggs

Kepler Scientists Discover Almost 100 New Exoplanets

'Oumuamua has been tumbling about the galaxy for a billion years

TECTONICS
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.