Subscribe free to our newsletters via your
. 24/7 Space News .




DEEP IMPACT
Contamination of Impacted Meteorites Can Happen Quickly
by Andrew Williams for Astrobiology Magazine
Moffett Field CA (SPX) Dec 22, 2014


illustration only

A team of scientists has published the results of an investigative survey into the Sutter's Mill meteorite that landed in California in 2012.

The results reveal that the meteorite contained a number of features associated with minerals such as olivines, phyllosilicates, carbonates, and possibly pyroxenes, as well as organics.

However, a key conclusion of the paper, and one that is likely to be of keen interest to astrobiologists, is confirmation that meteorites can become contaminated by Earth-based organics very quickly. That means scientists must be extra vigilant in identifying and assessing the effects of terrestrial organic contamination of meteoritic samples.

Infrared Spectroscopy
The paper, "Mid-infrared Study of Stones from the Sutter's Mill Meteorite," was published online in the March, 2014 issue of the journal Meteoritics and Planetary Science. It provides a detailed overview of the mineral composition of the meteorite, which fell in northern California on April 22, 2012.

Several fragments of the meteorite were recovered, four of them shortly after the fall, and others several days later after a heavy rainstorm. The research team used infrared spectroscopy, employing several different analytical devices to obtain spectra from very small samples.

The spectra from the samples were then compared those of "standard materials," which refer to previously identified and characterized mineral standards. For example, the spectra of the carbonates in the Sutter's Mill meteorite samples were compared against the spectra of "mineral standards" of the carbonates calcite and dolomite.

"This sort of spectral matching is a way to identify an unknown," says Scott Sandford, a co-author of the paper and a space scientist at the NASA Ames Research Center. "Good spectral matches suggest possible identifications, while bad matches eliminate them. Most of the spectra are dominated by minerals that are consistent with the identification of this meteorite as a carbonaceous chondrite."

Carbonaceous chondrites are counted amongst the most primitive of all known meteorites and comprise about 3 percent of all the meteorites collected on Earth. They are of particular importance to astrobiologists because of the insights they provide into the early history of the Solar System.

Indigenous Organics
The research team hoped that the analysis of the meteorite samples would detect the spectral features of the "indigenous organics" that arrived with the original meteorite, as opposed to organic contaminates that got onto the samples after they landed on the ground.

Although the team saw "clear" evidence of contamination on some of the samples, Sandford says there were a few places where it was "possible" that the team detected "organics original to the meteorite," but admits that the matter is "in no way proven by the data."

"[M]uch of the discussion in our paper associated with organics is devoted to addressing the caution that must be applied to searching for organics in this meteorite using spectral techniques, since the presence of organic contamination and abundant carbonate minerals makes spectral searches very difficult," adds Sandford.

For him, this difficulty was caused by a combination of two different factors. To begin with, even though some of the team's samples were collected fairly rapidly, there was evidence that bacterial contamination was present "in at least one of the samples."

Secondly, many of the samples contained abundant carbonate minerals, which made it much more difficult to detect the spectral signatures of certain types of organic materials.

As Sandford explains, this is because carbonate minerals produce a series of characteristic bands in the infrared spectrum, some strong, some weak. Some of these weak bands happen to land right on top of one of the spectral positions where particular types of organic compounds, known as aliphatic hydrocarbons, also typically produce features. Aliphatic hydrocarbons include molecules such as ethane, propane and butane.

"This is unfortunate, since it can cause considerable spectral confusion that makes it difficult to detect organics if they are present," adds Sandford.

A Note of Caution
In Sandford's view, both of these points serve as "cautionary items" for the astrobiology community.

The photon energies associated with the part of the infrared spectrum investigated by the team are generally not large enough to excite individual electrons, but are often high enough to induce the vibration of highly stable covalently bonded atoms and groups.

One way of thinking about this is to picture the covalent bonds in molecules not as stiff rods or poles of the type found in molecule construction kits, but rather as rigid springs that can be bent or stretched.

These types of vibrations, or vibrational modes, are often assigned descriptive names, including bending, scissoring, rocking, wagging, twisting and stretching. The research team analysing the Sutter's Mill meteorite concentrated on one such mode, known as the C-H stretching mode.

"Because of the structure of carbonate minerals, one of their vibrational modes can be mistaken for organics if only the C-H stretching region is examined and you're not cautious," he says.

Sandford adds: "I'd say that use of IR spectroscopy in the C-H stretching region clearly needs to be used with caution, particularly in samples that may contain carbonates."

Constant Vigilance
In light of the investigations carried out by the team, Sandford concludes that the broader astrobiological community "must always be vigilant" when assessing the effects of terrestrial contamination of any samples collected.

Although he is pessimistic about the prospects of astrobiologists ever finding signs of extinct life in meteorites, he believes that studies of this kind will continue to be a fruitful area of research into the detection of prebiotic organics.

"I don't think that there are many people who are trying to detect life in meteorites. Most of us are trying to detect prebiotic organics in meteorites - that is, molecules that may have played a role in helping life get started on Earth.

"While there are some folks that think they've detected signs of extinct life in meteorites, I have not so far found their arguments to be very compelling," he says.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Astrobiology Magazine
Asteroid and Comet Impact Danger To Earth - News and Science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








DEEP IMPACT
The Geminids meteor shower should be one of the best this year
Melbourne, Australia (The Conversation) Dec 12, 2014
The best meteor shower of the year should put on an impressive display this weekend - weather permitting - with the annual Geminids poised to light up the sky with bright, long meteors visible as frequently as every couple of minutes. Meteor showers occur when the Earth ploughs through trails of debris as it spins its yearly course around the sun. This weekend, the Earth will pass th ... read more


DEEP IMPACT
'Shooting the Moon' with Satellite Laser Ranging

Moon Express testing compact lunar lander at Kennedy

UK Plans to Drill Into Moon, Explore Feasibility of Manned Base

Carnegie Mellon Unveils Lunar Rover "Andy"

DEEP IMPACT
Tales from a Martian Rock

Russian scientists 'map' water vapor in Martian atmosphere

Flying over Becquerel

New idea for transporting spacecraft could ease trip to Mars

DEEP IMPACT
FFD signs Space Act Agreement with NASA for Space Suit Development

NASA Selects Commercial Space Partners for Collaborative Partnerships

Does the peer review process stifle scientific innovation?

NASA releases video of Orion spacecraft re-entry from astronaut's perspective

DEEP IMPACT
China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

Service module of China's returned lunar orbiter reaches L2 point

DEEP IMPACT
Bright lights: big cities at night

NASA, SpaceX Update Launch of Fifth SpaceX Resupply Mission to ISS

Fifth SpaceX Mission Lets the CATS Out on the International Space Station

Politics no problem, say US and Russian spacefarers

DEEP IMPACT
SES: Astra 2G ready for Dec 28 Proton launch

Soyuz Installed at Baikonur, Expected to Launch Wednesday

Russian Space Agency Pushes Back Earth Imaging Satellite Launch to Friday

State Spaceports Receive Federal Funding

DEEP IMPACT
Kepler Proves It Can Still Find Planets

NASA's Kepler Reborn, Makes First Exoplanet Find of New Mission

Super-Earth spotted by ground-based telescope, a first

Astronomers spot Pluto-size objects swarming about young sun

DEEP IMPACT
Lead islands in a sea of graphene magnetize the material of the future

Theory details how 'hot' monomers affect thin-film formation

Penn Researchers Show Commonalities in How Different Glassy Materials Fail

Danish radars for new British offshore patrol boats




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.