Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




CARBON WORLDS
Computer models show how deep carbon could return to Earth's surface
by Staff Writers
Davis CA (SPX) Mar 24, 2013


New computer modeling of water under extreme pressure shows that carbonate could dissolve in water deep in the Earth and so return to the surface. This rendering shows water molecules (white/pink) surrounding a carbonate ion (red/grey) with a section of the Earth in the background. Credit: Ding Pan and Yubo Zhang, UC Davis.

Computer simulations of water under extreme pressure are helping geochemists understand how carbon might be recycled from hundreds of miles below the Earth's surface. The work, by researchers at the University of California, Davis, and Johns Hopkins University, is published March 18 in the journal Proceedings of the National Academy of Sciences.

Carbon compounds are the basis of life, provide most of our fuels and contribute to climate change. The cycling of carbon through the oceans, atmosphere and shallow crust of the Earth has been intensively studied, but little is known about what happens to carbon deep in the Earth.

"We are trying to understand more about whether carbon can be transported in the deep Earth through water-rich fluids," said coauthor Dimitri Sverjensky, professor of earth and planetary sciences at Johns Hopkins University.

There is plenty of water in the mantle, the layer of the planet extending hundreds of miles below the Earth's crust, but little is known about how water behaves under the extreme conditions there - pressures run to hundreds of tons per square inch and temperatures are over 2,500 F.

Experiments reproducing these conditions are very hard to do, said Giulia Galli, professor of chemistry and physics at UC Davis and co-author on the paper. Geochemists have models to understand the deep Earth, but they have lacked a crucial parameter for water under these conditions: the dielectric constant, which determines how easily minerals will dissolve in water.

"When people use models to understand the Earth, they need to put in the dielectric constant of water - but there are no data at these depths," Galli said.

Galli and Sverjensky are collaborators in the Deep Carbon Observatory, supported by the Alfred P. Sloan Foundation, which seeks to understand the role of carbon in chemistry and biology deep in the Earth.

Researchers have speculated that carbon, trapped as carbonate in the shells of tiny marine creatures, sinks to the ocean floor and gets carried into the mantle on sinking crustal plates then is recycled and escapes through volcanoes, Sverjensky said. But there has been no mechanism to explain how this might happen.

Ding Pan, a postdoctoral researcher at UC Davis, used computer simulations of water to predict how it behaves under extreme pressure and temperature. The simulations show that the dielectric constant changes significantly.

By bringing that new factor into the existing models of water in the mantle, the researchers predict that magnesium carbonate, which is insoluble at the Earth's surface, would at least partially dissolve in water at that depth.

"It has been thought that this remains solid, but we show that at least part of it can dissolve and could return to the surface, possibly through volcanoes," Sverjensky said. "Over geologic timescales, a lot of material can move this way."

Sverjensky said the new modeling work was a "first step" to understanding how carbon deep in the Earth can return to the surface.

Launched in 2009, the Deep Carbon Observatory aims to achieve a better understanding of the "deep carbon cycle," and a more complete understanding of the role of carbon on our planet. The 10-year initiative, supported by the Sloan Foundation and headquartered at the Carnegie Institution of Washington, is organized into four directorates; Galli is co-chair of the Extreme Physics and Chemistry directorate and Sverjensky is a member of the scientific steering committee.

Other authors on the paper are Leonard Spanu, a postdoctoral researcher at UC Davis now at the Shell Technology Center in Bangalore, India; and Brandon Harris research assistant at Johns Hopkins.

.


Related Links
Extreme Physics and Chemistry directorate at UCD
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CARBON WORLDS
Long predicted atomic collapse state observed in graphene
Berkeley CA (SPX) Mar 08, 2013
The first experimental observation of a quantum mechanical phenomenon that was predicted nearly 70 years ago holds important implications for the future of graphene-based electronic devices. Working with microscopic artificial atomic nuclei fabricated on graphene, a collaboration of researchers led by scientists with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Be ... read more


CARBON WORLDS
NASA's LRO Sees GRAIL's Explosive Farewell

Amazon's Bezos recovers Apollo 11 engines

Leaping Lunar Dust

Lunar Orbiter Image Recovery Project Seeks Public Support To Retrieve Apollo Era Moon Images

CARBON WORLDS
Opportunity Heads to Matijevic Hill

Curiosity Resumes Science Investigations

Digging for hidden treasure on Mars

Sun in the Way Will Affect Mars Missions in April

CARBON WORLDS
Space Innovation Center Will Help Govt Agencies Launch Future Space Missions

The Future of Exploration Starts With 3-D Printing

Lockheed Martin to Continue Providing Life Sciences Support To NASA

U.S. Astronomers Call on Congress to Support R and D Investments

CARBON WORLDS
China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

CARBON WORLDS
New Space Station Crew Members to Launch and Dock the Same Day

ESA seeks innovators for orbiting laboratory

New ISS crew prepares for launch

Space crew returns to Earth from ISS

CARBON WORLDS
When quality counts: Arianespace reaffirms its North American market presence

SpaceX capsule returns after ISS resupply mission

SpaceX Dragon Spacecraft Carrying NASA Cargo Ready for Return to Earth

Dragon capsule to spend extra day in space

CARBON WORLDS
Astronomers Detect Water in Atmosphere of Distant Planet

Distant planetary system is a super-sized solar system

Water signature in distant planet shows clues to its formation

The Great Exoplanet Debate

CARBON WORLDS
New 'BioShock' game takes aim at American taboos

Japan finds rich rare earth deposits on seabed: study

Cutting-edge 3D film revives a Warsaw lost to war

Record simulations conducted on Lawrence Livermore supercomputer




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement