Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Colliding stars explain enigmatic 17th century explosion
by Staff Writers
Munich, Germany (SPX) Mar 26, 2015


This chart of the position of a nova (marked in red) that appeared in the year 1670 was recorded by the famous astronomer Hevelius and was published by the Royal Society in England in their journal Philosophical Transactions. Image courtesy Royal Society. For a larger version of this image please go herew.

New observations made with APEX and other telescopes reveal that the star that European astronomers saw appear in the sky in 1670 was not a nova, but a much rarer, violent breed of stellar collision.

It was spectacular enough to be easily seen with the naked eye during its first outburst, but the traces it left were so faint that very careful analysis using submillimetre telescopes was needed before the mystery could finally be unravelled more than 340 years later. The results appear online in the journal Nature on 23 March 2015.

Some of seventeenth century's greatest astronomers, including Hevelius - the father of lunar cartography - and Cassini, carefully documented the appearance of a new star in the skies in 1670. Hevelius described it as nova sub capite Cygni - a new star below the head of the Swan - but astronomers now know it by the name Nova Vulpeculae 1670.

Historical accounts of novae are rare and of great interest to modern astronomers. Nova Vul 1670 is claimed to be both the oldest recorded nova and the faintest nova when later recovered.

The lead author of the new study, Tomasz Kamiski (ESO and the Max Planck Institute for Radio Astronomy, Bonn, Germany) explains: "For many years this object was thought to be a nova, but the more it was studied the less it looked like an ordinary nova - or indeed any other kind of exploding star."

When it first appeared, Nova Vul 1670 was easily visible with the naked eye and varied in brightness over the course of two years. It then disappeared and reappeared twice before vanishing for good. Although well documented for its time, the intrepid astronomers of the day lacked the equipment needed to solve the riddle of the apparent nova's peculiar performance.

During the twentieth century, astronomers came to understand that most novae could be explained by the runaway explosive behaviour of close binary stars. But Nova Vul 1670 did not fit this model well at all and remained a mystery.

Even with ever-increasing telescopic power, the event was believed for a long time to have left no trace, and it was not until the 1980s that a team of astronomers detected a faint nebula surrounding the suspected location of what was left of the star. While these observations offered a tantalising link to the sighting of 1670, they failed to shed any new light on the true nature of the event witnessed over the skies of Europe over three hundred years ago.

Tomasz Kamiski continues the story: "We have now probed the area with submillimetre and radio wavelengths. We have found that the surroundings of the remnant are bathed in a cool gas rich in molecules, with a very unusual chemical composition."

As well as APEX, the team also used the Submillimeter Array (SMA) and the Effelsberg radio telescope to discover the chemical composition and measure the ratios of different isotopes in the gas. Together, this created an extremely detailed account of the makeup of the area, which allowed an evaluation of where this material might have come from.

What the team discovered was that the mass of the cool material was too great to be the product of a nova explosion, and in addition the isotope ratios the team measured around Nova Vul 1670 were different to those expected from a nova. But if it wasn't a nova, then what was it?

The answer is a spectacular collision between two stars, more brilliant than a nova, but less so than a supernova, which produces something called a red transient. These are a very rare events in which stars explode due to a merger with another star, spewing material from the stellar interiors into space, eventually leaving behind only a faint remnant embedded in a cool environment, rich in molecules and dust. This newly recognised class of eruptive stars fits the profile of Nova Vul 1670 almost exactly.

Co-author Karl Menten (Max Planck Institute for Radio Astronomy, Bonn, Germany) concludes: "This kind of discovery is the most fun: something that is completely unexpected!" This research was presented in a paper entitled "Nuclear ashes and outflow in the oldest known eruptive star Nova Vul 1670" by T. Kamiski et al., to appear online in the journal Nature on 23 March 2015. The team is composed of Tomasz Kamiski (ESO, Santiago, Chile; Max Planck Institute for Radio Astronomy, Bonn, Germany [MPIfR]), Karl M. Menten (MPIfR), Romuald Tylenda (N. Copernicus Astronomical Center, Toru?, Poland), Marcin Hajduk (N. Copernicus Astronomical Center), Nimesh A. Patel (Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA) and Alexander Kraus (MPIfR).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ESO
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Satellites Catch 'Growth Spurt' from Newborn Protostar
Pasadena CA (JPL) Mar 26, 2015
Using data from orbiting observatories, including NASA's Spitzer Space Telescope, and ground-based facilities, an international team of astronomers has discovered an outburst from a star thought to be in the earliest phase of its development. The eruption, scientists say, reveals a sudden accumulation of gas and dust by an exceptionally young protostar known as HOPS 383. Stars form within ... read more


STELLAR CHEMISTRY
Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

Extent of moon's giant volcanic eruption is revealed

NASA's LRO Spacecraft Finds March 17, 2013 Impact Crater and More

STELLAR CHEMISTRY
Ancient Martian lake system records 2 water-related events

Curiosity Rover Finds Biologically Useful Nitrogen on Mars

NASA's Opportunity Mars Rover Passes Marathon Distance

NASA Reformats Memory of Longest-Running Mars Rover

STELLAR CHEMISTRY
50 years ago today, space welcomed its first sandwich

Small Staff has Big Impact Showing How NASA Can Engage Students

TED Prize winner wishes for archive of human wisdom

The Science Of The Start-Up

STELLAR CHEMISTRY
China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

STELLAR CHEMISTRY
One-Year Crew Set for Launch to Space Station

Russia, US May Sign New Deal to Send Astronauts to ISS

Lockheed Martin reveals new method for resupplying space station

Testing astronauts' lungs in Space Station airlock

STELLAR CHEMISTRY
Arianespace selected by Airbus to launch EDRS-C Satellite

US to Scrap Delta IV Launch Vehicle in Favor of Russian-Made Rocket

Proton launches Express AM-7 satellite for Russian Government

DoD Works to Build Competition Into Space Launches

STELLAR CHEMISTRY
Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

ESA's CHEOPS Satellite: The Pharaoh of Exoplanet Hunting

Some habitable exoplanets could experience wildly unpredictable climates

STELLAR CHEMISTRY
Want to snag a satellite? Try a net

Slight surface movements on the radar

Spacecraft Power Systems

Processing Paradigms That Accelerate Computer Simulations




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.