. 24/7 Space News .
EARTH OBSERVATION
Clemson physicists lead rocket missions to further explore the wonders of Earth's atmosphere
by Staff Writers
Clemson SC (SPX) Sep 12, 2019

file image

Clemson University physicists will conduct a pair of three-year rocket missions funded by NASA Heliophysics designed to deepen our understanding of the visible and invisible mechanisms that modulate energy into Earth's atmosphere.

Stephen Kaeppler is the principal investigator on a project titled "INCAA," which will study how energy is transferred and dissipated during colorful active auroras. Kaeppler has been awarded a $1.7 million collaborative grant. INCAA stands for "Ion-Neutral Coupling during Active Aurora."

Gerald Lehmacher is the principal investigator on a project titled "VortEx," which will study how turbulence and other dynamic activities that occur far above the Earth's surface affect our planet's atmosphere. Lehmacher has been awarded a $967,000 collaborative grant. VortEx stands for "Vorticity Experiment."

Clemson University's department of physics and astronomy has had a long history of involvement using sounding rocket experiments to investigate the Earth's upper atmosphere. These latest missions will continue to provide opportunities for undergraduate and graduate students who want to become involved in all aspects of a NASA rocket mission from design to data analysis. The latest projects will begin this year and conclude in 2022. The launches are planned for 2021 and 2022. The countdown has begun.

The wonder of auroras
Auroras are splendorous light shows that appear in the sky in many vivid colors, including green (the most common), red, yellow, blue and violet. Auroras occur when charged particles cast from the distant sun collide with oxygen, nitrogen and other gaseous particles in the Earth's atmosphere.

When auroras occur in the Northern Hemisphere, they are called Aurora Borealis or Northern Lights. In the Southern Hemisphere, they are called Aurora Australis or Southern Lights. Both occur relatively close to the Earth's poles, where our planet's magnetic shield - which deflects most of the sun's charged particles - is weakest.

Kaeppler's project will delve into the movement and dissipation of energy during active auroral events. His team will develop state-of-the-art instrumentation that will be launched in two sounding rockets from the interior of Alaska at Poker Flat Research Range, the largest land-based rocket research range in the world. After reaching a height of about 100 kilometers, the instrumentation will activate.

"One of the things my group will look at, in particular, is how the flow of energy from distant space enters the atmosphere and where it goes from there," said Kaeppler, an assistant professor in the College of Science's department of physics and astronomy.

"We're going to measure at what altitudes the energy dissipates. The light of the auroras is a visual indicator of this flow of energy. But our research will probe deeper into how the Earth's atmosphere regulates this energy transfer and also what effects this energy input has on the atmosphere."

The sounding rockets that will be used by Kaeppler and Lehmacher will be 60 to 70 feet tall and weigh several thousand pounds. They are composed of a solid-fuel rocket motor and a science payload. When the rocket motor expends its fuel, it separates from the payload and falls away. The payload continues to rise for a period of time as it conducts its experiments.

In Kaeppler's project, a suite of plasma and neutral experiments will measure electric and magnetic fields, neutral winds, background atmospheric density and the drift of electrically charged atoms. The team will also use ground-based instruments and analyze the resulting data and compare it with model-runs provided by Xian Lu, an assistant professor of physics and astronomy at Clemson.

Members of Kaeppler's atmospheric team at Clemson include Miguel Larsen, Lehmacher and Lu. Other institutions in the collaboration include the University of California-Berkeley, University of Calgary and University of Alaska-Fairbanks.

"Myself and others here at Clemson have been studying auroras for years," Kaeppler concluded. "And the more I've studied them, the more fascinated I become. They are so beautiful, so extraordinary."

Turbulence in the mesosphere
The Earth's atmosphere is a five-layered mass of air surrounding the planet. The first layer is the troposphere, which starts on the surface of the planet and extends upward to between 8 and 14 kilometers (5-9 miles). Next is the stratosphere, which is about 35 kilometers thick (22 miles).

Third is the mesosphere, which is also about 35 kilometers thick. Fourth is the thermosphere, which is about 513 kilometers thick (319 miles). And finally, there is the exosphere, which is about 1,000 kilometers thick (620 miles). There is also the ionosphere, which overlaps the thermosphere and parts of the mesosphere and exosphere but is not considered a distinct layer.

Turbulent processes are found everywhere in Earth's atmosphere, but none more so than in the mesosphere, where winds often surpass 400 mph, dwarfing the speeds produced by Category 5 hurricanes. This intense conflagration of crashing, swirling energy affects the Earth's weather, temperature and atmospheric makeup in numerous ways, some better understood than others.

Lehmacher's project will culminate in the launching of four sounding rockets into the mesosphere and lower thermosphere that will collect data from this volatile region. What Lehmacher and his team learn from these experiments will help enhance the accuracy of our predictions of weather events and patterns.

"Rings of energy that come from major storms near the surface travel upward in the atmosphere as high as 100 kilometers," said Lehmacher, an associate professor in physics and astronomy. "At these incredible speeds, the atmosphere can become unstable. The waves can overturn, like a wave breaking on a seashore. Or they can become unstable from wind shear and cause clear-air turbulence, a similar process as sometimes encountered by aircraft."

This instability causes the upper atmosphere to mix with denser air being cast upward and lighter air downward helping to regulate temperatures around the entire planet.

"This new experiment will use radar and rockets and also an optical instrument to map out an area in the mesosphere about 100 by 200 kilometers, roughly the size of Upstate South Carolina," said Lehmacher, who will launch his rockets from Andoya Space Center in Norway. "The rockets will take off in pairs on two different days. In each pair, one rocket will contain 16 individual measurements of wind, while the other will perform a continuous measurement of wind and temperature."

By sampling and analyzing such a broad area, Lehmacher and his team will seek to gain a clearer understanding of wind movement and the effects of atmospheric buoyancy waves on turbulence.

Members of Lehmacher's atmospheric team include Michael Taylor of Utah State University; Jonathan Snively of Embry-Riddle Aeronautical University in Daytona Beach, Florida; and Franz-Josef Lubken and Jorge Chau of Leibniz-Institute for Atmospheric Physics, Germany.

"Our ultimate goal is to understand the variability of how this 100-kilometer region affects the upper atmosphere through this mixing process," Lehmacher said. "This will help us to better understand how space weather is influenced by tropospheric weather and the many waves emanating from the lower atmosphere."


Related Links
Clemson University
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
Lightning 'superbolts' form over oceans from November to February
Seattle WA (SPX) Sep 10, 2019
The lightning season in the Southeastern U.S. is almost finished for this year, but the peak season for the most powerful strokes of lightning won't begin until November, according to a newly published global survey of these rare events. A University of Washington study maps the location and timing of "superbolts" - bolts that release electrical energy of more than 1 million Joules, or a thousand times more energy than the average lightning bolt, in the very low frequency range in which lightning ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
JAXA spacecraft carries science, technology to the Space Station

Taking the next giant leaps

Malaysia Interested in Having Access to Russian Space Tech, Prime Minister Says

Voice-command ovens, robots for pets on show at Berlin's IFA tech fair

EARTH OBSERVATION
Fire forces Japan to cancel rocket launch to ISS

Putin reveals he offered to sell Trump Russia's hypersonic missiles

New salt-based propellant proven compatible in dual-mode rocket engines

Russia Launches Rokot Space Rocket to Orbit Military Satellite

EARTH OBSERVATION
'Martian CSI' Sheds Light on How Asteroid Impacts Generated Running Water Under Red Planet

NASA Research Gives New Insight into How Much Atmosphere Mars Lost

NASA engineers attach Mars Helicopter to Mars 2020 rover

ESA Chief says discussed ExoMars 2020 launch with Roscosmos

EARTH OBSERVATION
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

EARTH OBSERVATION
Private Chinese firms tapping international space market

Iridium and Thales Expand Partnership to Deliver Aircraft Connectivity Services

ESA re-routes satellite to avoid SpaceX collision risk

Cutting-edge Chinese satellite malfunctions after launch

EARTH OBSERVATION
Shaken but not stirred: Konnect satellite completes vibration tests

Suomi-NPP Satellite Instrument Restored After Radiation Damage

China's Tianhe-2 Supercomputer to Crunch Space Data From New Radio Telescope

China data centres set to consume more power than Australia: report

EARTH OBSERVATION
How to Spin a Disk Around Young Protostars

Potassium Detected in an Exoplanet Atmosphere

Planetary collisions can drop the internal pressures in planets

Deep-sea sediments reveal solar system chaos: An advance in dating geologic archives

EARTH OBSERVATION
Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms

Young Jupiter was smacked head-on by massive newborn planet

Mission to Jupiter's icy moon confirmed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.