. 24/7 Space News .
WATER WORLD
Clearing 'visual noise' to improve underwater vision and deep sea exploration
by Staff Writers
Washington DC (SPX) Nov 02, 2016


Image was taken in conditions of natural illumination of seawater. Since the water visibility is poor, the pictures have a low quality characterized by high-intensity noise and low contrast. Image courtesy Nan Wang. For a larger version of this image please go here.

Mankind has long been peering into the depths of the sea. From finding fish to avoiding rocks, the ability to see as far as possible through turbid water has been important for thousands of years. More recently, scientists are using sophisticated cameras to study sea floor geology and deep-sea animal behaviors but are continually challenged to get a clear picture of the remote fathoms of the ocean.

Now, a team of researchers from Ocean University of China in Qingdao, China, may have helped improve the quality of underwater visualizations. In a novel methodology for improving underwater viewing, they applied a mathematical approach known as logical stochastic resonance (LSR). When applied to poor-quality underwater images, the LSR algorithms improved the team's ability to visually detect objects. The results of their investigation are published in the journal Optics Letters, from The Optical Society.

In the past, LSR was mainly limited to theoretical research. The current study extends and applies LSR to practical problems of detecting objects in a highly scattering medium, like turbid seawater.

"Our work is an interesting trial to apply LSR to process a degraded image produced by underwater imaging through a turbid medium. It is a helpful advance because inherent noise and nonlinearity cause difficulty in processing these images through conventional image processing methods," explained Nan Wang, of the College of Information Science and Engineering and lead author of the study.

Their novel method for applying LSR to a visual problem demonstrates the effectiveness of their algorithm in extracting information that aids object detection in a heavily noisy background.

LSR is a somewhat counter-intuitive concept. The basic idea is to mix broadband noise with a noise-degraded signal in a non-linear medium to enhance signal frequency components over the background noise - a kind of constructive interference process that can produce increased clarity from within a muddle of noisy inputs.

LSR is more commonly considered in relation to noise and voltage fluctuations in non-linear electronic systems. In electronics, for example, LSR can be used to resolve multiple dynamic systems and create a productive - or "logical" - interplay that can be tuned and modulated. This can result in a controlled current and more energy-efficient electronics.

In the current study, researchers adapted the LSR approach to the problem of "visual noise" that degrades the quality of conventional image processing. In this case the noise is due to suspended particles in the water which causes variations in the absorption and scattering of light, a common state of most water in nature, especially seawater.

The LSR experiment required several steps. First, researchers obtained a heavily degraded, noisy underwater image. Next, they placed it in the LSR system as an input signal. They then input additional noise to counter the inherent noise - think of it as the constructive interference step because it helped separate objects in the image from the background. The process produced improved object detection by indicating whether a pixel belonged to the object or the background.

"Results in the natural offshore area demonstrate the effect of LSR in image processing, and the proposed method creates an interesting effect in the processing of heavily degraded images," Wang said. Final color correction and contrast enhancement algorithms, such as white balance and histogram equalization, can be used to produce a visually pleasing image, he added.

Wang and his colleagues conducted their experiments in Jiaozhou Bay in Northeast China. During the study, they battled high seas for several days on board a ship making the work difficult. "The big waves made a lot of trouble for us in trying to capture useful images," Wang said. Despite the difficulty, the researchers are eager to validate the work, refine it and extend its applications toward overcoming obstacles of seeing underwater.

B. Zheng, N. Wang, H. Zheng, Y. Zhinbin and J. Wang. Tripathi, Y. Chinifooroshan, W. Bock and P. Mikulic, "Object Extraction from Underwater Image through Logical Stochastic Resonance," Opt. Lett. 41, 4967-4970. DOI: 10.1364/OL.41.004967.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Optical Society
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Coatian Navy receives autonomous underwater vehicles
Zagreb, Croatia (UPI) Oct 17, 2016
Croatia's Ministry of Defense reports the country's navy has received an undisclosed number of autonomous underwater vehicles from the United States. The Remus 100 vehicles were manufactured this year, the ministry said, and were received as a donation. "The donated vehicles are of very recent date ... and are intended for various underwater operations, and will greatly upgrade t ... read more


WATER WORLD
Lisbon dreams of Europe's Silicon Valley tag

NASA Astronaut Kate Rubins, Crewmates Safely Return From the Space Station

Russia to Allocate $1.5Bln to Federal Space Program in 2017 - Draft Budget Plan

No Balloons for JPL's Birthday, Just a 'Satelloon'

WATER WORLD
NASA Uses Tunnel Approach to Study How Heat Affects SLS Rocket

SpaceX Aims to Resume Falcon 9 Flights in 2016, Blames Helium Tank for Explosion

Raytheon gets $174 million Hypersonic Air-Breathing Weapon contract

SpaceX zeroes in on helium containers for rocket explosion

WATER WORLD
New instrument could search for signatures of life on Mars

Detailed images of Schiaparelli and its descent hardware on Mars

Cursed not, Difficult yes

Did it crash or land? Search on for Europe's Mars craft

WATER WORLD
China to launch Long March-5 carrier rocket in November

US, China hold second meeting on advancing space cooperation

China to enhance space capabilities with launch of Shenzhou-11

Ambitious space satellite projects set for liftoff

WATER WORLD
Shared vision and goals for the future of Europe in space

SSL delivers Sky Perfect JSAT satellite to Kourou

Dream coming true for ISS-bound rookie French astronaut

Airbus DS contracts with Intelsat General for European Defence Communications

WATER WORLD
3-D-printed permanent magnets outperform conventional versions, conserve rare materials

Nickel-78 is a doubly magic isotope supercomputer confirms

Researchers bring eyewear-free 3-D capabilities to small screen

Towards better metallic glasses

WATER WORLD
How Planets Like Jupiter Form

Giant Rings Around Exoplanet Turn in the Wrong Direction

Preferentially Earth-sized Planets with Lots of Water

Potential new hunting ground for exoplanets discovered

WATER WORLD
Mystery solved behind birth of Saturn's rings

Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.