Subscribe free to our newsletters via your
. 24/7 Space News .




TECTONICS
Chinese continental shelf collided with Eurasia 100M years ago
by Staff Writers
Beijing, China (SPX) Sep 23, 2015


Portion of the world topographic map, highlighting the continental China and its adjacent land and seas (Google Map, 2015) to illustrate: (1) the Chinese continental shelf (basement of the East and South China Seas) to be of exotic origin; (2) arrival of the buoyant and unsubductable oceanic plateau or micro-continent at the trench jammed the trench at ~ 100 Ma; (3) the jammed trench location is shown in red dashed curve along the southeast coast of continental China although it is unclear in the north as indicated by the dashed light blue curve with question marks; (4) The yellow "drop" dots are granitoid sample locations with ages in the literature. The thick dashed purple line labeled E-W GGL approximates the East-West Great Gradient Line topographically separating the plateau to the west from the low-land hilly plain to the east. Image courtesy Science China Press. For a larger version of this image please go here.

It has been axiomatically accepted that the basement of a continental shelf is the offshore extension and geologically part of the same continental lithosphere. While this notion may hold true in places, our analysis of the distribution of Jurassic-Cretaceous granitoids throughout the entire eastern continental China in space and time led us to the conclusion that the basement of the Chinese continental shelf (beneath East China Sea and South China Sea) is of exotic origin geologically unrelated to the continental lithosphere of eastern China.

This exotic terrane of a sizeable mass with large compositional buoyancy could be either an oceanic plateau or a micro continent, which was transported by, or along with, the paleo-Pacific plate moving in the course of NW direction and subducting beneath the eastern margin of the continental China in the Mesozoic, responsible for the granitoids with emplacement ages of ~ 190 Ma to ~ 88 Ma.

The termination of the granitoid magmatism throughout the vast region at ~ 88 Ma manifests the likelihood of subduction cessation at this time or more likely shortly beforehand, probably at ~ 100 Ma. Subduction stops only if the trench is jammed by a sizable terrane that is compositionally buoyant and physically unsubductable. The basement of the Chinese continental shelf is understood to be such an unsubductable mass of either an oceanic plateau or micro continent as said above that collided with the eastern margin of the continental China and jammed the trench at ~ 100 Ma.

The trench jam at ~ 100 Ma led to the Pacific plate to change its course of motion from NW to NNW and to subduct beneath the predecessors of the Kamchatka and western Aleutian trenches as manifested by the age progressive Emperor Seamount Chain of the Hawaiian hotspot origin. This Pacific plate re-orientation produced a transform boundary between the NNW moving Pacific plate and the newly accreted eastern Asian continental plate, which explains the ~ 40 Myrs' time gap of subduction related magmatism in the greater western Pacific region before the present-day western Pacific subduction began at ~ 50 Ma.

Because of the large compositional contrast across this transform boundary, it may have evolved into a trench with oblique subduction until ~ 43 Ma when the Pacific plate changed its course again back to the NW direction as manifested by the ~ 43 Ma kink and age progressive Hawaiian Seamount Chain of the Hawaiian hotspot origin.

The locus (or "suture") of the jammed trench at 100 Ma is predicted to locate on the Chinese continental shelf in the vicinity of, and parallel to, the Southeast coastal line (red dashed curve in Fig. 1). The curved arc-shape of the coastal line is inherited from the pre-100 Ma arc-shaped trench, which is similar in both curvature and size to the India-Asia collision arc (red solid curve in Fig. 1). To locate the locus in the northern section in the East China Sea and Yellow Sea is not straightforward because of the recent (< 20 Ma) tectonic re-organization associated with the opening of the Sea of Japan (see the light blue dashed line with question marks in Fig. 1).

The eastern continental China in the Mesozoic can be interpreted as an active continental margin, but NOT an Andean-Type margin as treated by many. This is because the granitoids do not define "magmatic arcs" at any given time, but distribute randomly in space and time in a wide zone in excess of > 1000 km.

This observation indicates the likelihood of the presence of a stagnant paleo-Pacific slab in the mantle transition-zone beneath the region as is the case in the Cenozoic, which is seismically observed at present. The stagnant slab under heating by the ambience above and below caused the slab dehydration. This dehydration caused a sequence of processes of geodynamic and geological significance.

The released water facilitated the formation of hydrous melt within and above the transition zone, which percolated through and metasomatized the upper mantle, weakened the base of the lithosphere and transformed it into asthenosphere, hence having thinned lithosphere in the Mesozoic, accompanied by melting of the being-converted "lithospheric material" to produce basaltic melt as the heat source for crustal melting and the granitoid magmatism. Such within plate magmatism was ultimately triggered by subduction and subducted slabs, and can be readily understood as a special (vs. plate boundary zone) consequence of plate tectonics.

This new understanding on the origin of the Chinese continental shelf introduces an innovative hypothesis for consideration and testing. Basement penetration drilling on ideal sites of the shelf in collaboration with industries and IODP is expected to offer the most effective testing towards a genuine understanding of the tectonic evolution of the greater western Pacific since the Mesozoic in a global tectonic context.

This work was supported by Durham University in the UK, Chinese NSF grants (41130314, 91014003), Chinese Academy of Sciences Innovation grant (Y42217101L), grants from Chinese National Oceanography Laboratory in Qingdao, and from regional and local authorities (Shandong Province and City of Qingdao). See the article: Niu YL, Liu Y, Xue QQ, Shao FL, Chen S, Duan M, Guo PY, Gong HM, Hu Y, Hu ZX, Kong JJ, Li JY, Liu JJ, Sun P, Sun WL, Ye L, Xiao YY, Zhang Y (2015) Exotic origin of the Chinese continental shelf: New insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Science China Press
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECTONICS
Megathrust quake faults weaker and less stressed than thought
Menlo Park CA (SPX) Sep 15, 2015
Some of the inner workings of Earth's subduction zones and their "megathrust" faults are revealed in a paper published in the journal Science. U.S. Geological Survey scientist Jeanne Hardebeck calculated the frictional strength of subduction zone faults worldwide, and the stresses they are under. Stresses in subduction zones are found to be low, although the smaller amount of stress can still le ... read more


TECTONICS
NASA's LRO discovers Earth's pull is 'massaging' our moon

Moon's crust as fractured as can be

China aims to land Chang'e-4 probe on far side of moon

China Plans Lunar Rover For Far Side of Moon

TECTONICS
Supervising two rovers from space

Team Continues to Operate Rover in RAM Mode

Ridley Scott's 'The Martian' takes off in Toronto

Mars Panorama from Curiosity Shows Petrified Sand Dunes

TECTONICS
Making a difference with open source science equipment

NASA, Harmonic Launch First Non-Commercial UHD Channel in NAmerica

Russian cosmonaut back after record 879 days in space

New Life for Old Buddy: Russia Tests Renewed Soyuz-MS Spacecraft

TECTONICS
Long March-2D carrier rocket blasts off in NW China

Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

TECTONICS
US astronaut misses fresh air halfway through year-long mission

Andreas Mogensen lands after a busy mission on Space Station

ISS Crew Enjoy Kharcho Soup, Mare's Milk in Orbit

Slam dunk for Andreas in space controlling rover on ground

TECTONICS
Russia successfully launches satellite with Proton rocket

SpaceX Signs New Commercial Launch Contracts

ILS announces one ILS Proton launch for HISPASAT in 2017

First Ever Launch Vehicle to Be Sent to Russia's New Spaceport in Siberia

TECTONICS
Watching an exoplanet in motion around a distant star

Europlanet 2020 launches new era of planetary collaboration in Europe

Nearby Red Dwarfs Could Reveal Planet Secrets

Astronomers peer into the 'amniotic sac' of a planet-hosting star

TECTONICS
'Lab-on-a-Chip' to cut costs of sophisticated tests for diseases and disorders

Physicists defy conventional wisdom to identify ferroelectric material

Engineers unlock remarkable 3-D vision from ordinary digital camera technology

Making 3-D objects disappear




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.