Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Catalyst could make production of key chemical more eco-friendly
by Staff Writers
Providence RI (SPX) Apr 14, 2016


This is nitrogen-rich graphene festooned with finely tuned copper nanoparticles selectively converts carbon dioxide to ethylene, a key commodity chemical. Image courtesy Sun Lab / Brown University. For a larger version of this image please go here.

The world has more carbon dioxide than it needs, and a team of Brown University chemists has come up with a potential way to put some of it to good use. The researchers developed a new composite catalyst using nitrogen-rich graphene dotted with copper nanoparticles. A study, published in the journal Nano Energy, showed that the new catalyst can efficiently and selectively convert carbon dioxide to ethylene, one of the world's most important commodity chemicals.

Ethylene is used to make plastics, construction materials and other products. Chemical companies produce it by the millions of tons each year using processes that usually involve fossil fuels. If excess carbon dioxide can be used to make ethylene, it could help make the chemical industry more sustainable and eco-friendly.

"We hope that this new catalyst could be a step toward a greener way to produce ethylene," said Shouheng Sun, a professor of chemistry and engineering at Brown, whose research team developed the catalyst. "There is much more work to be done to bring such a process to an industrial scale, but this is a start."

Selectivity is key
Carbon dioxide is a stable form of carbon, and breaking it down into active carbon forms is no easy task. While some catalysts can do the job, they generally do not have good selectivity, meaning they create a variety of different reaction products.

"Most other techniques produce ethylene, methane, carbon monoxide - all kinds of things that you would then have to separate," Sun said. "We wanted something that could be more selective."

Qing Li, a former postdoctoral fellow in Sun's lab and now a professor at Huazhong University of Science and Technology in China, thought a catalyst that combines copper nanoparticles with graphene might be effective. Sun's lab had previously shown that metal nanoparticles, when tuned to the right size, could have increased reactivity. Graphene, one-atom-thick sheets of carbon, has also been shown to increase catalyst reactivity.

Li, the new study's lead author, experimented with copper nanoparticles deposited on several different graphene surfaces - pure graphene, graphene oxide and graphene doped with nitrogen in various forms. Nitrogen doping is a process of introducing nitrogen atoms into the lattice of carbon atoms that make up graphene.

The study showed that seven-nanometer copper particles deposited on graphene doped with pyridinic nitrogen (an arrangement that causes nitrogen atoms to be bonded to two carbon atoms) had the best performance. That arrangement had selectivity for ethylene of 79 percent, significantly higher than other approaches, according to the study.

"Synergistic effect"
It is not entirely clear what about the new catalyst is responsible for its performance, but Li and Sun propose a few ideas.

"It's probably a synergistic effect," Li said. "The pyridinic nitrogen helps to anchor the copper nanoparticles and change the electronic environment around them, which changes the reaction pathway to selectively produce ethylene."

Sun noted that carbon dioxide can serve as a weak Lewis acid - a compound that accepts electrons from donor compounds. Pyridinic nitrogen in the nitrogen-doped graphene forms a Lewis base center.

"We think that the presence of this Lewis base center helps to draw more carbon dioxide close to the copper for the observed catalysis," Sun said.

The researchers plan to continue work with the new catalyst, possibly using it in tandem with other catalysts to produce different reaction products.

"The possibilities are exciting," Sun said.

Other authors on the paper were Wenlei Zhu, Jiaju Fu and Hongyi Zhang from Brown, and Gang Wu from SUNY Buffalo. The work was supported by the U.S. Army Research Laboratory and the U.S. Army Research Office (W911NF-15-1-0147 and W911NF-11-1-0353), and the National Science Foundation ( CHE-1240020).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Brown University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Methods used to create textiles also could help manufacture human tissues
Columbia MO (SPX) Apr 13, 2016
Tissue engineering is a process that uses novel biomaterials seeded with stem cells to grow and replace missing tissues. When certain types of materials are used, the "scaffolds" that are created to hold stem cells eventually degrade, leaving natural tissue in its place. The challenge is creating enough of the material on a scale that clinicians need to treat patients. Elizabeth Loboa, dea ... read more


TECH SPACE
The Moon thought to play a major role in maintaining Earth's magnetic field

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

Earth's moon wandered off axis billions of years ago

TECH SPACE
Help keep heat on Mars Express through data mining

Ancient Mars bombardment likely enhanced life-supporting habitat

Opportunity's Devilish View from on High

Mars Longevity Champion Launched 15 Years Ago

TECH SPACE
US-based cruise liner eyes China market with dedicated liner

Spanish port becomes global 'smart city' laboratory

Silicon Beach: LA tech hub where the sun always shines

New DNA/RNA Tool to Diagnose, Treat Diseases

TECH SPACE
China launches SJ-10 retrievable space science probe

Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

TECH SPACE
Dragon and Cygnus To Meet For First Time In Space

Russian cargo ship docks successfully with space station

Russia launches cargo ship to space station

Cargo ship reaches space station on resupply run

TECH SPACE
NASA Progresses Toward SpaceX Resupply Mission to Space Station

SpaceX lands rocket on water platform for first time

SpaceX to launch first cargo since 2015 accident

Atlas V OA-6 Anomaly Status

TECH SPACE
Young, unattached Jupiter analog found in solar neighborhood

Searching for Far Out and Wandering Worlds

ALMA's most detailed image of a protoplanetary disc

Planet formation in Earth-like orbit around a young star

TECH SPACE
Breaking metamaterial symmetry with reflected light

Changing the color of single photons in a diamond quantum memory

'Self-healing' plastic could mean better bandages, tougher phone cases

Methods used to create textiles also could help manufacture human tissues




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement