Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















TIME AND SPACE
Can we see a singularity, the most extreme object in the universe?
by Staff Writers
Mumbai, India (SPX) Apr 21, 2017


A black hole (on the left) and a naked singularity (on the right). The dashed line represents the event horizon of the black hole, which is absent in the case of a naked singularity, and the arrows represent the direction in which light rays travel. In the case of the black hole, because of the presence of an event horizon, all light rays inside it necessarily end up at the singularity. However, light rays may escape from the vicinity of a naked singularity to a far away observer rendering it visible.

A team of scientists at the Tata Institute of Fundamental Research (TIFR), Mumbai, India, have found new ways to detect a bare or naked singularity, the most extreme object in the universe.

When the fuel of a very massive star is spent, it collapses due to its own gravitational pull and eventually becomes a very small region of arbitrarily high matter density, that is a`Singularity', where the usual laws of physics may breakdown.

If this singularity is hidden within an event horizon, which is an invisible closed surface from which nothing, not even light, can escape, then we call this object a black hole. In such a case, we cannot see the singularity and we do not need to bother about its effects. But what if the event horizon does not form? In fact, Einstein's theory of general relativity does predict such a possibility when massive stars collapse at the end of their life-cycles. In this case, we are left with the tantalizing option of observing a naked singularity.

An important question then is, how to observationally distinguish a naked singularity from a black hole. Einstein's theory predicts an interesting effect: the fabric of spacetime in the vicinity of any rotating object gets `twisted' due to this rotation. This effect causes a gyroscope spin and makes orbits of particles around these astrophysical objects precess.

The TIFR team has recently argued that the rate at which a gyroscope precesses (the precession frequency), when placed around a rotating black hole or a naked singularity, could be used to identify this rotating object. Here is a simple way to describe their results.

If an astronaut records a gyroscope's precession frequency at two fixed points close to the rotating object, then two possibilities can be seen: (1) the precession frequency of the gyroscope changes by an arbitrarily large amount, that is, there is a wild change in the behaviour of the gyroscope; and (2) the precession frequency changes by a small amount, in a regular well-behaved manner. For the case (1), the rotating object is a black hole, while for the case (2), it is a naked singularity.

The TIFR team, namely, Dr. Chandrachur Chakraborty, Mr. Prashant Kocherlakota, Prof. Sudip Bhattacharyya and Prof. Pankaj Joshi, in collaboration with a Polish team comprising Dr. Mandar Patil and Prof. Andrzej Krolak, has infact shown that the precession frequency of a gyroscope orbiting a black hole or a naked singularity is sensitive to the presence of an event horizon.

A gyroscope circling and approaching the event horizon of a black hole from any direction behaves increasingly 'wildly,' that is, it precesses increasingly faster, without a bound. But, in the case of a naked singularity, the precession frequency becomes arbitrarily large only in the equatorial plane, but being regular in all other planes.

The TIFR team has also found that the precession of orbits of matter falling into a rotating black hole or a naked singularity can be used to distinguish these exotic objects. This is because the orbital plane precession frequency increases as the matter approaches a rotating black hole, but this frequency can decrease and even become zero for a rotating naked singularity.

This finding could be used to distinguish a naked singularity from a black hole in reality, because the precession frequencies could be measured in X-ray wavelengths, as the infalling matter radiates X-rays.

1. "Spin precession in a black hole and naked singularity spacetimes,''C. Chakraborty, P. Kocherlakota, and P. S. Joshi, Phys. Rev. D 95, 044006 (2017)

2. "Distinguishing Kerr naked singularities and black holes using the spin precession of a test gyro in strong gravitational fields,''C. Chakraborty, P. Kocherlakota, M. Patil, S. Bhattacharyya, P. S. Joshi, and A. Kr\'olak, Phys. Rev. D 95, 084024 (2017)

Research paper

TIME AND SPACE
Brightness of the universe with NASA's New Horizons spacecraft
Rochester NY (SPX) Apr 12, 2017
Images taken by NASA's New Horizons mission on its way to Pluto, and now the Kuiper Belt, have given scientists an unexpected tool for measuring the brightness of all the galaxies in the universe, said a Rochester Institute of Technology researcher in a paper published this week in Nature Communications. In the study, "Measurement of the Cosmic Optical Background using the Long Range Recon ... read more

Related Links
Tata Institute of Fundamental Research
Understanding Time and Space

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Russian, American two-man crew blasts off to ISS

Orbital ATK launches cargo to space station

Soyuz-FG rocket to be installed at Baikonur on April 17

US giant Discovery plans huge Costa Rica eco-resort

TIME AND SPACE
Russia and US woo Brazil, hope to use advantageous base for space launches

Creation of carrier rocket for Baiterek Space Complex to cost Russia $500Mln

Dream Chaser to use Europe's next-generation docking system

Europe's largest sounding rocket launched from Esrange

TIME AND SPACE
Mars spacecraft's first missions face delays, NASA says

France, Japan aim to land probe on Mars moon

NASA's MAVEN reveals Mars has metal in its atmosphere

Opportunity Mars rover on the way to Perseverance Valley

TIME AND SPACE
Ticking Boxes with Tianzhou

Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

TIME AND SPACE
Airbus and Intelsat team up for more capacity

Commercial Space Operators To Canada: "We're Here, and We can Help"

Antenna Innovation Benefits the Government Customer

Ukraine in talks with ESA to become member

TIME AND SPACE
Tweaking a molecule's structure can send it down a different path to crystallization

Apple touts greater use of recycled metal in gadgets

Lasers measure jet disintegration

Computers create recipe for two new magnetic materials

TIME AND SPACE
Potentially Habitable Super-Earth is a Prime Target for Atmospheric Study

Evidence for Habitable Region Within Saturn's Moon Enceladus

Science fiction horror wriggles into reality with discovery of giant sulfur-powered shipworm

Earth-Sized 'Tatooine' Planets Could Be Habitable

TIME AND SPACE
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement