. 24/7 Space News .
CHIP TECH
Breakthrough in the quantum transfer of information between matter and light
by Staff Writers
Montreal, Canada (SPX) Nov 14, 2016


illustration only

A paper titled "High-Fidelity and Ultrafast Initialization of a Hole-Spin Bound to a Te Isoelectronic Centre in ZnSe" was recently published in the prestigious journal Physical Review Letters.

The creation of a qubit in zinc selenide, a well-known semi-conductor material, made it possible to produce an interface between quantum physics that governs the behaviour of matter on a nanometre scale and the transfer of information at the speed of light, thereby paving the way to producing quantum communications networks.

In today's computers, classical physics rules.

Billions of electrons work together to make up an information bit: 0, electrons are absent and 1, electrons are present. In quantum physics, single electrons are instead preferred since they express an amazing attribute: the electron can take the value of 0, 1 or any superposition of these two states. This is the qubit, the quantum equivalent of the classical bit. Qubits provide stunning possibilities for researchers.

An electron revolves around itself, somewhat like a spinning top. That's the spin. By applying a magnetic field, this spin points up, down, or simultaneously points both up and down to form a qubit.

Better still, instead of using an electron, we can use the absence of an electron; this is what physicists call a "hole." Like its electron cousin, the hole has a spin from which a qubit can be formed. Qubits are intrinsically fragile quantum creature, they therefore need a special environment.

Zinc selenide, or ZnSe, is a crystal in which atoms are precisely organized. It is also a semi-conductor into which it is easy to intentionally introduce tellurium impurities, a close relative of selenium in the periodic table, on which holes are trapped, rather like air bubbles in a glass.

This environment protects the hole's spin - our qubit - and helps maintaining its quantum information accurately for longer periods; it's the coherence time, the time that physicists the world over are trying to extend by all possible means. The choice of zinc selenide is purposeful, since it may provide the quietest environment of all semiconductor materials.

Philippe St-Jean, a doctoral student on Professor Sebastien Francoeur's team, uses photons generated by a laser to initialize the hole and record quantum information on it. To read it, he excites the hole again with a laser and then collects the emitted photons.

The result is a quantum transfer of information between the stationary qubit, encoded in the spin of the hole held captive in the crystal, and the flying qubit - the photon, which of course travels at the speed of light.

This new technique shows that it is possible to create a qubit faster than with all the methods that have been used until now. Indeed, a mere hundred or so picoseconds, or less than a billionth of a second, are sufficient to go from a flying qubit to a static qubit, and vice-versa.

Although this accomplishment bodes well, there remains a lot of work to do before a quantum network can be used to conduct unconditionally secure banking transactions or build a quantum computer able to perform the most complex calculations. That is the daunting task which Sebastien Francoeur's research team will continue to tackle.

The Natural Sciences and Engineering Research Council of Canada (NSERC) funded the research of Mr. Francoeur and his team. Article: St-Jean, P., Ethier-Majcher, G., Andre, R., and Francoeur, S. (2016). High-fidelity and ultrafast initialization of a hole spin bound to a Te isoelectronic center in ZnSe. Physical Review Letters, 117(16). doi:10.1103/PhysRevLett.117.167401.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Polytechnique Montreal
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Researchers discover new method to dissipate heat in electronic devices
Riverside CA (SPX) Nov 14, 2016
Controlling the flow of heat through semiconductor materials is an important challenge in developing smaller and faster computer chips, high-performance solar panels, and better lasers and biomedical devices. For the first time, an international team of scientists led by a researcher at the University of California, Riverside has modified the energy spectrum of acoustic phonons - elemental ... read more


CHIP TECH
Russian New Generation Satellites to Undergo First Flight Tests in 2020

NASA, U.S. Navy Practice Orion Recovery Procedures

Russia space center to work with US on spaceflight biomed issues

Progress, but uphill slog for women in tech

CHIP TECH
Ariane 5 at launch zone for Nov 17 mission with four Galileo satellites

Airbus Safran Launchers and ESA sign confirmation of the Ariane 6 program

US revives hypersonic aerospace research

JCSAT-15 arrives in Kourou for Dec Ariane 5 launch

CHIP TECH
Can we grow potatoes on Mars

Dutch firm unveils concept space suit for Mars explorers

Meteorites reveal lasting drought on Mars

Opportunity heads to next waypoint at over 27 miles on the odometer

CHIP TECH
China launches pulsar test satellite

China's Chang'e-2 a success

Long March-5 reflects China's "greatest advancement" yet in rockets

New heavy-lift carrier rocket boosts China's space dream

CHIP TECH
Can India beat China at its game with common satellite for South Asia

SSL delivers powerful, high capacity broadband satellite for Hughes to Cape Canaveral

NASA to Launch Fleet of Hurricane-Tracking SmallSats

NASA small satellites will take a fresh look at Earth

CHIP TECH
Scientists have 'scared away' microparticles with laser light

Study: Math scares everyone, even physicists

Exotic property of salty solutions discovered

Tiny magnifying glass reveals chemical bonds between atoms

CHIP TECH
Earth-bound instrument analyzes light from planets circling distant stars

Protoplanetary Discs Being Shaped by Newborn Planets

Scientists unveil latest exoplanet-hunter CHARIS

What happens to a pathogenic fungus grown in space?

CHIP TECH
Mystery solved behind birth of Saturn's rings

Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.