Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Breakthrough in energy storage: Electrical cables that can store energy
by Staff Writers
Orlando, FL (SPX) Jun 03, 2014


Jayan Thomas is a professor and scientist at the University of Central Florida. Image courtesy UCF.

Imagine being able to carry all the juice you needed to power your MP3 player, smartphone and electric car in the fabric of your jacket? Sounds like science fiction, but it may become a reality thanks to breakthrough technology developed at a University of Central Florida research lab.

So far electrical cables are used only to transmit electricity. However, nanotechnology scientist and professor Jayan Thomas and his Ph.D. student Zenan Yu have developed a way to both transmit and store electricity in a single lightweight copper wire.

Their work is the focus of the cover story of the June 30 issue of the material science journal Advanced Materials and science magazine, Nature has published a detailed discussion about this technology in the current issue.

"It's a very interesting idea," Thomas said. "When we did it and started talking about it, everyone we talked to said, "Hmm, never thought of that. It's unique.'"

Copper wire is the starting point but eventually, Thomas said, as the technology improves, special fibers could also be developed with nanostructures to conduct and store energy.

More immediate applications could be seen in the design and development of electrical vehicles, space-launch vehicles and portable electronic devices. By being able to store and conduct energy on the same wire, heavy, space-consuming batteries could become a thing of the past.

It is possible to further miniaturize the electronic devices or the space that has been previously used for batteries could be used for other purposes. In the case of launch vehicles, that could potentially lighten the load, making launches less costly, Thomas said.

So how did he get the idea about energy-storing cables? He was inspired during a routine evening walk in his neighborhood.

Thomas and his team began with a single copper wire. Then they grew a layer of nanowhiskers on the outer surface of the copper wire. These whiskers were then treated with a special alloy, which created an electrode. Two electrodes are needed for the powerful energy storage. So they had to figure out a way to create a second electrode.

They did it- this by adding a very thin plastic sheet around the whiskers and wrapping it around using a metal sheath (the second electrode) after generating nanowhiskers on it (the second electrode and outer covering). The layers were then glued together with a special gel. Because, of the insulationthe nanowhisker layer is insulating, the inner copper wire retains its ability to channel electricity, the layers around the wire independently store powerful energy.

In other words, Thomas and his team created a supercapacitor on the outside of the copper wire. Supercapcitors store powerful energy, like that needed to start a vehicle or heavy-construction equipment.

Although more work needs to be done, Thomas said the technique should be transferable to other types of materials. That could lead to specially treated clothing fibers being able to hold enough power for big tasks. For example, if flexible solar cells and these fibers were used in tandem to make a jacket, it could be used independently to power electronic gadgets and other devices.

"It's very exciting," Thomas said. "We take it step by step. I love getting to the lab everyday, and seeing what we can come up with next. Sometimes things don't work out, but even those failures teach us a lot of things. Still, I know how important getting out of the lab can be too. I won't be giving up those evening walks anytime soon. I get some great ideas during that quiet time."

Yu is the co-author of the study. He works in Thomas' Nano Energy-Photonics Group. It conducts research focused primarily on nanostructured supercapacitors and Lithiuim-ion batteries, nanoarchitectured light-trapping solar cells, photorefractive polymers for 3D display applications, and nonlinear optical materials.

.


Related Links
University of Central Florida
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Trojan Showcases Smart Carbon Line of Advanced Lead Acid Batteries
Munich, Germany (SPX) Jun 03, 2014
Trojan Battery will showcase its new lines of deep-cycle batteries featuring Smart Carbon technology which addresses the impact of partial state of charge (PSOC) on cycling batteries in renewable energy (RE), inverter backup and remote telecom applications. Smart Carbon is designed to enhance life and performance of Trojan batteries operating in PSOC. Smart Carbon is a standard feature in ... read more


ENERGY TECH
Earth's gravitational pull stretches moon surface

NASA Missions Let Scientists See Moon's Dancing Tide From Orbit

Water in moon rocks provides clues and questions about lunar history

NASA Invites Public to Select Favorite Moon Image for Lunar Orbiter Anniversary Collection

ENERGY TECH
LDSD Testing for Large Payloads to Mars

New Mars Lander to Probe Interior of Red Planet

A habitable environment on Martian volcano

Mars Curiosity rover may have transported Earth bacteria to Mars

ENERGY TECH
SpaceX founder unveils his 'future of space travel' capsule

First Phase To Certify New US Space Transport System Completed

NASA faces identity crisis, funding battle

US may lose 'star wars' to Russia

ENERGY TECH
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

ENERGY TECH
Russian Soyuz with New Crew Docks at ISS in Automatic Mode

Russian, German and US astronauts dock with ISS

Six-Person Station Crew Enjoys Day Off Following Docking

ESA astronaut Alexander Gerst arrives at ISS

ENERGY TECH
SpaceX unveils capsule to ferry astronauts to space

Roscosmos Scolded for 'Pestering Society' with Proton Crash Theories

Elon Musk to present manned DragonV2 spacecraft on May 29

Russia puts satellite in orbit from sea platform after 2013 flop

ENERGY TECH
'Godzilla' of Earths circles distant star

Astronomers find a new type of planet: The 'mega-Earth'

Because you can't eat just one: Star will swallow two planets

'Neapolitan' exoplanets come in three flavors

ENERGY TECH
Russia preparing to launch Okno space surveillance system at full capacity

Citizen Scientists Contact Vintage Spacecraft

New Method of Wormlike Motion Lets Gels Wiggle through Water

Stronger than steel




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.