. 24/7 Space News .
SPACE MEDICINE
Brand-new cochlear implant technology born from frictional electricity
by Staff Writers
Seoul, South Korea (SPX) Oct 21, 2016


Triboelectric-based artificial basilar membrane (TEABM). Image courtesy DGIST. For a larger version of this image please go here.

DGIST Professor Hongsoo Choi(Department of Robotics Engineering) and his research team developed the world's first artificial basilar membrane that mimics the cochlear function by application of the genetic principle of frictional electricity. The artificial basilar membrane is the crucial to overcome the limits of existing cochlear implant technology. The technology was co-developed by Professor Choi and Professor Jonghoon Chang(Ajou University Hospital).

The team made the triboelectric-based artificial basilar membrane (TEABM), by applying the cochlear frequency separation and energy transformation functions, critical of the human hearing system, into the frictional electricity generated between polyimide film and aluminum film. In addition, they proved that TEABM made through animal experiments can be utilized for restoring the impaired animal's listening.

Cochlear has a flexible basilar membrane in its inner side. The frequency of sound signals delivered through the external ear and the middle ear is mechanically separated by the basilar membrane's physical attributes. Furthermore, activity of basilar membrane moves the hair cell of cochlear and generates bioelectrical signals. While stimulating the neuron, the signals would be delivered into the brain for recognizing the sound.

For a sensorineural-hearing loss patient, a severe hearing loss case, cochlear implant operation has been known as the only way to recover hearing. However, complication from exposure to the external body, a complicated electrical signal processing circuit, frequent battery charge, and expensive unit cost have been cited as major issues of the cochlear implant.

In order to address the issues, Korean researchers already had developed artificial basilar membrane using piezo-electric materials. However, TEABM also is known to carry disadvantages such as relatively high frequency response range in comparison with human voice and low reception, complexity of piezo-electric materials and silicon based artificial basilar membranes production.

Professor Choi's team applied Triboelectric Nanogenerator (TENG) using frictional electricity in producing of artificial basilar membrane. TENG transforms mechanical energy into electrical energy by using the electrostatic induction and triboelectric charges of two materials. The research team made the TEABM in order for the width and length of the beam to respond to the frequency of auditory scene by using the frictional electricity generated between polyimide and aluminum films.

TEABM designed by the team could generate electrical signals, responding to the acoustic stimulation of fewer than 4kHz which is regarded as an auditory scene. TEABM then separated the frequency of acoustic signal mechanically and generated the auditory nerve for auditory nerve.

In addition, the research team measured the Electrically Evoked Auditory Brainstem Response (eABR) of hearing impaired animals with generated electrical signals. The result showed that the operating frequency scene is close to the auditory scene and its receiving sensitivity is seven times higher, proving that TEABM will be used as the next generation cochlear implant's key technology for recovering hearing loss.

Professor Choi said, "TEABM is a key technology viable to develop next generation cochlear implant not required for battery or a complex electrical signal process circuit. We will further make efforts for commercialization of technology in order for severe hearing loss patients.

The research result was published on the cover of biomaterial international journal Advanced Healthcare Materials on October 12(Wed) 2016.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Daegu Gyeongbuk Institute of Science and Technology
Space Medicine Technology and Systems






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE MEDICINE
DARPA Helps Paralyzed Man Feel Again Using a Brain-Controlled Robotic Arm
Washington DC (SPX) Oct 14, 2016
A DARPA-funded research team has demonstrated for the first time in a human a technology that allows an individual to experience the sensation of touch directly in the brain through a neural interface system connected to a robotic arm. By enabling two-way communication between brain and machine-outgoing signals for movement and inbound signals for sensation-the technology could ultimately suppor ... read more


SPACE MEDICINE
Hunter's Supermoon to light up Saturday night sky

Small Impacts Are Reworking Lunar Soil Faster Than Scientists Thought

A facelift for the Moon every 81,000 years

Exploration Team Shoots for the Moon with Water-Propelled Satellite

SPACE MEDICINE
Anxious wait for news of Mars lander's fate

Robot explorers headed for Mars quest: ESA

Ready for the Red Planet

ESA lander starts 3-day descent to Mars; Telemetry all good

SPACE MEDICINE
Beaches, skiing and tai chi: Club Med, Chinese style

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

Growing Interest: Students Plant Seeds to Help NASA Farm in Space

SPACE MEDICINE
China to launch manned spacecraft: Xinhua

Closing windows on Shenzhou 11

China to launch world's first X-ray pulsar navigation satellite

China may be only country with space station in 2024

SPACE MEDICINE
Hurricane Nicole delays next US cargo mission to space

Automating sample testing thanks to space

Orbital CRS-5 launching hot and bright science to space

Roscosmos Sets New Date for Soyuz MS-02 Launch to Orbital Station

SPACE MEDICINE
Ariane 5 ready for first Galileo payload

ILS Announces Two Missions under Its EUTELSAT Multi-Launch Agreement

More commercial spaceports going ahead

Orbital ATK and Stratolaunch partner to offer competitive launch opportunities

SPACE MEDICINE
Proxima Centauri might be more sunlike than we thought

Stars with Three Planet-Forming Discs of Gas

TESS will provide exoplanet targets for years to come

The death of a planet nursery?

SPACE MEDICINE
Pushing the boundaries of magnet design

Polymer breakthrough to improve things we use everyday

Efficiency plus versatility

Achieving ultra-low friction without oil additives









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.