Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Boon to fusion: Scientist finds new way to predict heat layer troublemaker
by John Greenwald
Princeton NJ (SPX) Aug 22, 2012


Researchers at a recent worldwide conference on fusion power have confirmed the surprising accuracy of a new model for predicting the size of a key barrier to fusion that a top scientist at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has developed. The model could serve as a starting point for overcoming the barrier.

"This allows you to depict the size of the challenge so you can think through what needs to be done to overcome it," said physicist Robert Goldston, the Princeton University professor of astrophysical sciences and former PPPL director who developed the model.

Goldston was among physicists who presented aspects of the model in late May to the 20th Annual International Conference on Plasma Surface Interactions in Aachen, Germany. Some 400 researchers from around the world attended the conference. Results of the model have been "eerily close" to the data, said Thomas Eich, a senior scientist at the Max Planck Institute for Plasma Physics in Garching, Germany, who gave an invited talk on his measurements. The agreement appears too close to have happened by chance, Eich added.

Goldston's model predicts the width of what physicists call the "scrape-off layer" in tokamaks, the most widely used fusion facilities. Such devices confine hot, electrically charged gas, or plasma, in powerful magnetic fields. But heat inevitably flows through the system and becomes separated, or scraped off, from the edge of the plasma and flows into an area called the divertor chamber.

The challenge is to prevent a thin and highly concentrated layer of heat from reaching and damaging the plate that sits at the bottom of the divertor chamber and absorbs the scrape-off flow. Such damage would halt fusion reactions, which take place when the atomic nuclei, or ions, inside the plasma merge and release energy. "If nothing was done and you took this right on the chin, it could be a knockout blow," said Goldston, who published his model in January in the journal Nuclear Fusion.

Solving this problem will be vital for future machines like ITER, the world's most powerful tokamak, which the European Union, the United States and five other countries are building in France to demonstrate fusion as a source of clean and abundant energy. The project is designed to produce 500 megawatts of fusion power in 400 second-long pulses, which will require researchers to spread the scrape-off heat as much as possible to protect the divertor plate.

Goldston's model could help guide such efforts. He began pondering the width of the heat flux during an international physics conference in South Korea in 2010. Looking at the latest scrape-off layer data based on improved measurements, he estimated-literally on an envelope-that the new widths could be produced without plasma turbulence, a factor that is typically considered but is notoriously difficult to calculate.

This led him to search for a way to estimate the width of the surprisingly thin layer, and to gauge how the width would vary as conditions such as the amount of electrical current in the plasma varied.

The way plasma flows inside tokamaks provided the major clue. The ions within the charged gas gyrate swiftly along the magnetic field lines while drifting slowly across the lines.

At the same time, the electrons also in the plasma travel very rapidly along the lines and carry away most of the heat. Goldston arrived at his prediction by determining how fast these subatomic particles flow into the divertor region, and how long it therefore takes them to reach it. The result "is what we call a 'heuristic' estimate, based on the key aspects of the physics, but not a detailed calculation," said Goldston.

His estimate confirmed what Goldston had suspected: the width of the scrape-off layer nearly matched the results of a calculation, made without considering turbulence, for determining how far the ions drift away from their field lines. "What's stunning is how closely the values correspond to the data, both in absolute value and in variation with the plasma current, magnetic field, machine size and input power," Goldston said.

"This does not mean that turbulence plays no role, but it suggests that for the highest performance conditions, where turbulence is weakest, the motion of the ions is dominated by non-turbulent drift effects." This will be true in the case of ITER, he added, since it is designed to operate in high-performance conditions.

Researchers are developing techniques for widening the scrape-off layer. Such methods include pumping gas into the divertor region to keep some heat from reaching the plate. Physicists use deuterium, a form of hydrogen, to block the heat, and are injecting nitrogen to turn other parts of the heat into ultraviolet light. (While charged deuterium ions are already in the plasma, the deuterium gas that is injected into the divertor region to block the heat is not electrically charged.)

These strategies look promising. "We know that they will work," said Goldston. "The outstanding question is whether they will work completely enough" to mitigate the heat flux at ITER's highest power levels, without introducing so much gas that it cools the fuel. Physicists around the world are conducting experiments to understand the process better.

For Goldston, calculating the width of the scrape-off layer marks the latest research effort in a 40-year career at PPPL, which began when he was a graduate student. Along the way he helped to pioneer techniques for heating the plasma, and developed a widely used method called "Goldston scaling" for predicting how long heat is retained in a tokamak plasma.

"First, heat is injected into the plasma," Goldston said of how tokamaks operate. "Second, that heat is retained while much more heat is generated by fusion reactions. Finally, the resulting heat has to come out of the plasma. Without thinking about it, I have been following heat along this trajectory throughout my whole research career," he added.

"We have made great progress on the first two steps, and now the most exciting challenge, to me, is the one that comes because of our success so far. Now we need to learn to handle the the outflow of heat from a high-power fusion energy source."

.


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Tennessee takes big step towards nuclear fusion power
Knoxville TN (SPX) Jun 11, 2012
Imagine a world without man-made climate change, energy crunches or reliance on foreign oil. It may sound like a dream world, but University of Tennessee, Knoxville, engineers have made a giant step toward making this scenario a reality. UT researchers have successfully developed a key technology in developing an experimental reactor that can demonstrate the feasibility of fusion energy fo ... read more


ENERGY TECH
Chinese firm to send Spanish rover to moon in 2014

LRO Spectrometer Detects Helium in Moon's Atmosphere

NASA's 'Mighty Eagle' Robotic Prototype Lander Flies Again at Marshall

Roscosmos Announces Tender for Moon Rocket Design

ENERGY TECH
New Mars mission to take first look at what's going on deep inside the Red Planet

Curiosity rover set for first test drive

Rover's Laser Instrument Zaps First Martian Rock

Fantastic Phobos

ENERGY TECH
For US students, plane tickets, TVs are relics

Voyager at 35: Break on Through to the Other Side

XCOR Becomes Corporate Sponsor of Uwingu, a Space Apps Company

Florida Spaceport Stakes Claim to Commercial Missions

ENERGY TECH
Is China Going to Blast Past America in Space?

Hong Kong people share joy of China's manned space program

China's Long March-5 carrier rocket engine undergoes testing

China to land first moon probe next year

ENERGY TECH
Space station orbit successfully adjusted

ISS Orbit Adjustment to Continue on August 22

Cosmonauts Begin First Expedition 32 Spacewalk

ATV-3 Vehicle Fails to Adjust Space Station Orbit

ENERGY TECH
ASTRA 2F touches down in French Guiana for Arianespace's next Ariane 5 dual-passenger mission

Satellite preparations move into full swing for the next Arianespace Soyuz mission from French Guiana

Russian Booster Rocket Lifts US Satellite in Seaborne Launch

India's GSAT-10 satellite continues its checkout for the upcoming Arianespace Ariane 5 mission

ENERGY TECH
First Evidence Discovered of Planet's Destruction by Its Star

Exoplanet hosting stars give further insights on planet formation

Five Potential Habitable Exoplanets Now

RIT Leads Development of Next-generation Infrared Detectors

ENERGY TECH
Hewlett-Packard books $8.9 bn loss

Apple-Samsung smartphone clash heads to jury

China slightly increases export quota for rare earths

Information overload in the era of 'big data'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement