. 24/7 Space News .
AEROSPACE
Birds flying through laser light reveal faults in flight research, Stanford study shows
by Staff Writers
Stanford CA (SPX) Dec 06, 2016


Obi the parrotlet wearing protective goggles. Image courtesy Eric Gutierrez. For a larger version of this image please go here.

The protective goggles are tight, the chin strap secure. Conditions are calm and the lasers are ready; the air is infused with tiny aerosol particles that are primed to scatter and track at the slightest disruption. Wait for the signal. The researcher points. The bird flies! It's just another day at the office for a parrotlet named Obi.

As a graduate student working with Stanford mechanical engineer David Lentink, Eric Gutierrez trained this member of the second smallest parrot species in order to precisely measure the vortices it creates during flight. Their results, published in the Dec. 6 issue of Bioinformatics and Biomimetics, help explain the way animals generate enough lift to fly and could have implications for how flying robots and drones are designed.

"The goal of our study was to compare very commonly used models in the literature to figure out how much lift a bird, or other flying animal, generates based off its wake," said Diana Chin, a graduate student in the Lentink lab and co-author of the study. "What we found was that all three models we tried out were very inaccurate because they make assumptions that aren't necessarily true."

Scientists rely on these models, developed to interpret the airflow generated by flying animals, to understand how animals support their weight during flight. The results are commonly referenced for work on flying robots and drones inspired by the biology of these animals. Bio-inspired robots are a specialty of Lentink - his students developed the first flapping robot that can take off and land vertically like an insect and a swift-like robot with wings that deform as it swoops and glides.

For this experiment, Gutierrez, the study's lead author and former graduate student in the Lentink lab, made parrotlet-sized goggles using lenses from human laser safety goggles, 3D-printed sockets and veterinary tape. The goggles also had reflective markers on the side so the researchers could track the bird's velocity. Then he trained Obi to wear the goggles and to fly from perch to perch.

Once trained, the bird flew through a laser sheet that illuminated nontoxic, micron-sized aerosol particles. As the bird flew through the seeded laser sheet, its wing motion disturbed the particles to generate a detailed record of the vortices created by the flight.

Those particles swirling off Obi's wingtips created the clearest picture to date of the wake left by a flying animal. Past measurements had been taken a few wingbeats behind the animal, and predicted that the animal-generated vortices remain relatively frozen over time, like airplane contrails before they dissipate. But the measurements in this work revealed that the bird's tip vortices break up in a sudden dramatic fashion.

"Now, whereas vortex breakup happens far away behind the aircraft - like more than a thousand meters - in birds, it can happen very close to the bird, within two or three wingbeats, and it is much more violent," said Lentink, who is the senior author on the paper.

The question was whether models of lift based on an inaccurate idea of an animal's wake were valid.

The team applied each of the three prevailing models to the actual measurements they recorded and from that generated three different estimates of the amount of lift Obi generated with each wingbeat. They then compared those calculated estimates of lift to the actual lift measured in a previous study carried out using a sensitive device developed by the Lentink lab. (The instrument, an aerodynamic force platform, is so sensitive that it nearly broke when they tested a prototype by popping a fully inflated balloon inside, said Lentink.)

What they found is that to varying degrees, all three models failed to predict the actual lift generated by a flapping parrotlet.

This research highlights challenges in developing flying robots based on what's known about animal flight. The differences between the three models, plus the variety of animals involved in earlier studies, including other bird species, bats and insects, makes comparison within the literature extremely challenging. As shown by the problematic performance of the current options, a completely new model may be the answer.

"Many people look at the results in the animal flight literature for understanding how robotic wings could be designed better," said Lentink. "Now, we've shown that the equations that people have used are not as reliable as the community hoped they were. We need new studies, new methods to really inform this design process much more reliably."

Lentink believes that the new technique developed by his lab - the one for measuring force directly - could be combined with detailed flow measurements to better dissect and model the aerodynamic phenomena involved in animal flight.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Stanford University
Aerospace News at SpaceMart.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
AEROSPACE
Japan receives its first F-35 joint strike fighter
Luke Air Force Base, Alaska (UPI) Dec 2, 2016
Japan's Air Self-Defense Force received its first Lockheed Martin F-35A Joint Strike Fighter at Luke Air Force Base. The delivery marks a milestone for Lockheed Martin's F-35 program, with Japan now one of three U.S. foreign military sales customers, along with Israel and South Korea. The first F-35A variant was presented during a ceremony on Sept. 23. IHS Jane's reports the airc ... read more


AEROSPACE
Orbital ATK Ends 2016 with Three Successful Cargo Resupply Missions to ISS

Space Food Bars Will Keep Orion Weight Off and Crew Weight On

Russian Space Sector Overcomes Failures

Embry-Riddle Students Join Project PoSSUM to Test Prototype Spacesuits in Zero-G

AEROSPACE
Russia to Launch Fewer Spacecraft in 2016 Than US, China for First Time

Soyuz-U Carrier Rocket Installed to Baikonur Launching Pad

Ariane 5's impressive 75 in-a-row launch record

Vega ready for GOKTURK-1A to be encapsulated

AEROSPACE
CaSSIS Sends First Images from Mars Orbit

First views of Mars show potential for ESA's new orbiter

ExoMars space programme needs an extra 400 million euros

Opportunity team onsidering a new route due to boulder field

AEROSPACE
China launches 4th data relay satellite

Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

AEROSPACE
ESA looks at how to catch a space entrepreneur

Thales and SENER to jointly supply optical payloads for space missions

Citizens' space debate: the main findings and the future

Two-year extensions confirmed for ESA's science missions

AEROSPACE
New technology of ultrahigh density optical storage researched at Kazan University

Earth's 'technosphere' now weighs 30 trillion tons

A watershed moment in understanding how H2O conducts electricity

Researchers take first look into the 'eye' of Majoranas

AEROSPACE
Biologists watch speciation in a laboratory flask

Timing the shadow of a potentially habitable extrasolar planet

Fijian ants began farming 3 million years ago

Researchers propose low-mass supernova triggered formation of solar system

AEROSPACE
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.