Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Bio-inspired method to grow high-quality graphene for high-end electronic devices
by Staff Writers
Singapore (SPX) Dec 17, 2013


Researchers at NUS' Graphene Research Centre.

A team of researchers from the National University of Singapore (NUS), led by Professor Loh Kian Ping, who heads the Department of Chemistry at the NUS Faculty of Science, has successfully developed an innovative one-step method to grow and transfer high-quality graphene on silicon and other stiff substrates, opening up opportunities for graphene to be used in high-value applications that are currently not technologically feasible.

This breakthrough, inspired by how beetles and tree frogs keep their feet attached to submerged leaves, is the first published technique that accomplishes both the growth and transfer steps of graphene on a silicon wafer.

This technique enables the technological application of graphene in photonics and electronics, for devices such as optoelectronic modulators, transistors, on-chip biosensors and tunneling barriers.

The innovation was first published online in prestigious scientific journal Nature on 11 December 2013.

Demand for graphene in silicon-based industries
Graphene has attracted a lot of attention in recent years because of its outstanding electronic, optical and mechanical properties, as well as its use as transparent conductive films for touch screen panels of electrodes.

However, the production of high quality wafer-scale graphene films is beset by many challenges, among which is the absence of a technique to grow and transfer graphene with minimal defects for use in semiconductor industries.

Said Prof Loh, who is also a Principal Investigator with the Graphene Research Centre at NUS Faculty of Science, "Although there are many potential applications for flexible graphene, it must be remembered that to date, most semiconductors operate on "stiff" substrates such as silicon and quartz."

"The direct growth of graphene film on silicon wafer is useful for enabling multiple optoelectronic applications, but current research efforts remain grounded at the proof-of-concept stage. A transfer method serving this market segment is definitely needed, and has been neglected in the hype for flexible devices," Prof Loh added.

Drawing inspiration from beetles and tree frogs
To address the current technological gap, the NUS team led by Prof Loh drew their cues from how beetles and tree frogs keep their feet attached to fully submerged leaves, and developed a new process called "face-to-face transfer".

Dr Gao Libo, the first author of the paper and a researcher with the Graphene Research Centre at NUS Faculty of Science, grew graphene on a copper catalyst layer coating a silicon substrate. After growth, the copper is etched away while the graphene is held in place by bubbles that form capillary bridges, similar to those seen around the feet of beetles and tree frogs attached to submerged leaves.

The capillary bridges help to keep the graphene on the silicon surface and prevent its delamination during the etching of the copper catalyst. The graphene then attaches to the silicon layer.

To facilitate the formation of capillary bridges, a pre-treatment step involving the injection of gases into the wafer was applied by Dr Gao. This helps to modify the properties of the interface and facilitates the formation of capillary bridges during the infiltration of a catalyst-removal liquid. The co-addition of surfactant helps to iron out any folds and creases that may be created during the transfer process.

Industrial applications and new insights
This novel technique of growing graphene directly on silicon wafers and other stiff substrates will be very useful for the development of rapidly emerging graphene-on-silicon platforms, which have shown a promising range of applications.

The "face-to-face transfer" method developed by the NUS team is also amenable to batch-processed semiconductor production lines, such as the fabrication of large-scale integrated circuits on silicon wafers.

To further their research, Prof Loh and his team will optimise the process in order to achieve high throughput production of large diameter graphene on silicon, as well as target specific graphene-enabled applications on silicon. The team is also applying the techniques to other two-dimensional films. Talks are now underway with potential industry partners.

.


Related Links
National University of Singapore
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Next-generation semiconductors synthesis
Washington DC (SPX) Nov 14, 2013
Although silicon semiconductors are nearly universal in modern electronics, devices made from silicon have limitations-including that they cease to function properly at very high temperatures. One promising alternative are semiconductors made from combinations of aluminum, gallium, and indium with nitrogen to form aluminum nitride (AlN), gallium nitride (GaN), and indium nitride (InN), whi ... read more


CHIP TECH
China's Lunar Lander May Provide Additional Science for NASA Spacecraft

China plans to launch Chang'e-5 in 2017

Mining the moon is pie in the sky for China: experts

Ancient crater could hold clues about moon's mantle

CHIP TECH
Opportunity Communications Remain Slow Due To Odyssey Issues

New Views of Mars from Sediment Mineralogy

NASA poised to launch Mars atmosphere probe

The Tough Task of Finding Fossils While Wearing a Spacesuit

CHIP TECH
IBM sees five tech-powered changes in next five years

European consortium space company to offer 'affordable' trips to space

Planning group calls for National Space Policy in Britain

Quails in orbit: French cuisine aims for the stars

CHIP TECH
Chinese sci-fi writers laud moon landing

China deploys 'Jade Rabbit' rover on moon

The Dragon Has Landed

Chinaese moon rover and lander photograph each other

CHIP TECH
Altitude of International Space Station raised

NASA mulls spacewalks to fix space station

NASA reports coolant loop problem at ISS

Space station cooling breakdown may delay Orbital launch

CHIP TECH
India to decide December 27 on GSAT-14 launch date

Arianespace orders 18 rockets for 2 bn euros

Iran sends second monkey into space

SpaceX to bid for rights to historic NASA launch pad

CHIP TECH
Astronomers solve temperature mystery of planetary atmospheres

Nearby failed stars may harbor planet

Innovative instrument probes close binary stars, may soon image exoplanets

Feature of Earth's atmosphere may help in search for habitable planets

CHIP TECH
Inertial Sensor Head shaken but not disturbed

Programming smart molecules

SOFS Take to Water

Rock points to potential diamond haul in Antarctica




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement