Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




EXO LIFE
Billion-year-old water could hold clues to life on Earth and Mars
by Staff Writers
Manchester, UK (SPX) May 20, 2013


The crystalline rocks surrounding the water are thought to be around 2.7 billion years old. But no-one thought the water could be the same age, until now. Using ground-breaking techniques developed at the University of Manchester, the researchers show that the fluid is at least 1.5 billion years old, but could be significantly older.

A UK-Canadian team of scientists has discovered ancient pockets of water, which have been isolated deep underground for billions of years and contain abundant chemicals known to support life.

This water could be some of the oldest on the planet and may even contain life. Not just that, but the similarity between the rocks that trapped it and those on Mars raises the hope that comparable life-sustaining water could lie buried beneath the red planet's surface.

The findings, published in Nature, may force us to rethink which parts of our planet are fit for life, and could reveal clues about how microbes evolve in isolation.

Researchers from the universities of Manchester, Lancaster, Toronto and McMaster analysed water pouring out of boreholes from a mine 2.4 kilometres beneath Ontario, Canada.

They found that the water is rich in dissolved gases like hydrogen, methane and different forms - called isotopes - of noble gases such as helium, neon, argon and xenon. Indeed, there is as much hydrogen in the water as around hydrothermal vents in the deep ocean, many of which teem with microscopic life.

The hydrogen and methane come from the interaction between the rock and water, as well as natural radioactive elements in the rock reacting with the water. These gases could provide energy for microbes that may not have been exposed to the sun for billions of years.

The crystalline rocks surrounding the water are thought to be around 2.7 billion years old. But no-one thought the water could be the same age, until now.

Using ground-breaking techniques developed at the University of Manchester, the researchers show that the fluid is at least 1.5 billion years old, but could be significantly older.

NERC-funded Professor Chris Ballentine of the University of Manchester, co-author of the study, and project director, says: 'We've found an interconnected fluid system in the deep Canadian crystalline basement that is billions of years old, and capable of supporting life. Our finding is of huge interest to researchers who want to understand how microbes evolve in isolation, and is central to the whole question of the origin of life, the sustainability of life, and life in extreme environments and on other planets.'

Before this finding, the only water of this age was found trapped in tiny bubbles in rock and is incapable of supporting life. But the water found in the Canadian mine pours from the rock at a rate of nearly two litres per minute. It has similar characteristics to far younger water flowing from a mine 2.8 kilometres below ground in South Africa that was previously found to support microbes.

Ballentine and his colleagues don't yet know if the underground system in Canada sustains life, but Dr Greg Holland of Lancaster University, lead author of the study says: 'Our Canadian colleagues are trying to find out if the water contains life right now. What we can be sure of is that we have identified a way in which planets can create and preserve an environment friendly to microbial life for billions of years. This is regardless of how inhospitable the surface might be, opening up the possibility of similar environments in the subsurface of Mars.'

Professor Ballentine, based in Manchester's School of Earth, Atmospheric and Environmental Sciences, adds: 'While the questions about life on Mars raised by our work are incredibly exciting, the ground-breaking techniques we have developed at Manchester to date ancient waters also provide a way to calculate how fast methane gas is produced in ancient rock systems globally. The same new techniques can be applied to characterise old, deep groundwater that may be a safe place to inject carbon dioxide.'

David Willetts, Minister for Universities and Science, says: 'This is excellent pioneering research. It gives new insight into our planet. It has also developed new technology for carbon capture and storage projects. These have the potential for growth, job creation and our environment.'

The paper - Deep fracture fluids isolated in the crust since the Precambrian era by G. Holland, B. Sherwood Lollar, L. Li, G. Lacrampe-Couloume, G. F. Slater and C. J. Ballentine, in Nature - will be published online on 16 May 2013

.


Related Links
University of Manchester
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO LIFE
How the Density of Exoplanets' Atmospheres Weighs on the Odds for Alien Life
Moffett Field CA (SPX) May 03, 2013
At this early stage in the search for extraterrestrial life in our solar system and beyond, the emphasis is on liquid water. Where it can exist on a planet's or moon's surface, so the thinking goes, life as we know it has a chance. Much of the observational and theoretical work in astrobiology therefore concerns the "habitable zone," the orbital band around stars where a rocky world's wa ... read more


EXO LIFE
Bright Explosion on the Moon

NASA says meteor impact on the moon glowed like a star

Where on Earth did the moon's water come from

Water on moon, Earth have a common source

EXO LIFE
Mars Icebreaker Life Mission

Nine-Year-Old Mars Rover Passes 40-Year-Old Record

NASA Probe Counts Space Rock Impacts on Mars

Living and Dying on Mars

EXO LIFE
British astronaut 'Major Tim' to fly to ISS

Danish Space Venture ready for lift off

Researchers use graphene quantum dots to detect humidity and pressure

Outside View: Patents laws and suffering innovators

EXO LIFE
China launches communications satellite

On Course for Shenzhou 10

Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

EXO LIFE
Mice, gerbils perish in Russia space flight

Star Canadian spaceman back on Earth, relishing fresh air

ISS Statistics Tell the Story of Science in Orbit

Spaceman says goodbye to ISS with David Bowie classic

EXO LIFE
O3b Networks' initial satellite is fueled for Arianespace's upcoming Soyuz launch from the Spaceport

Ariane Flight VA214's launch vehicle marks a preparation milestone

ILS Proton Successfully Launches EUTELSAT 3D for Eutelsat

Russia's Proton-M Spacecraft Set to Orbit French Satellite

EXO LIFE
Critical Kepler Reaction Wheel Fails: Mission End In Sight

Sifting Through the Atmosphere's of Far-Off Worlds

New Method of Finding Planets Scores its First Discovery

Team Takes Part in Discovering New Planet

EXO LIFE
NASA Seeks High-Performance Spaceflight Computing Capabilities

SPUTNIX is granted a license for space activity

Stanford Engineers' New Metamaterial Doubles Up on Invisibility

Observation of second sound in a quantum gas




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement