Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Barnacles go with the flow to find a home on dolphin fins
by Staff Writers
London, UK (SPX) Jun 22, 2015


Barnacles were attached to the fins of dolphins. Image courtesy Dr. Mariano Domingo, Autonomous University of Barcelona, Spain. For a larger version of this image please go here.

Highly specialized coronulid barnacles may be able to identify and attach to the fins of quick-swimming dolphins, locating areas suited for finding food and developing larvae, according to a study carried out as a collaboration between the University of Valencia, Spain, and the University of Southern Mississippi, and published June 17, 2015 in the open-access journal PLOS ONE by Juan Carrillo and colleagues.

Scientists have reported several types of symbiotic barnacles that settle on living host organisms. The highly specialized coronulid barnacle, Xenobalanus globicipitis, attaches exclusively to cetaceans, particularly dolphins from tropical and temperate waters, but little is known about the factors that drive the attachment location on its hosts.

In this paper, the authors investigate patterns of microhabitat selection of the coronulid barnacle on the striped dolphin, based on data on occurrence, abundance, distribution, orientation, and size of the barnacles collected from 242 striped dolphins stranded along the Mediterranean coast of Spain from 1979-2009.

The authors found that barnacles exclusively attach to the fins, particularly along the trailing edge facing away from the water flow. Occurrence, abundance, and density of the barnacles were significantly higher, and barnacles were significantly larger, on the tail fin (caudal fin) than on the flippers and dorsal fin.

On the tail fin, barnacles tended to select the dorsal side and the central portion of the fin. The authors suggest that barnacles may be able to chemically recognize the dolphin skin and passively find a location through the 'vortex' that is created by water flowing over and around the dolphin on the fins.

Barnacles selected the edge of fins and attached facing away from water flow, possibly benefiting from a suitable environment to filter nutrients for food and to protect developing larvae. The authors point out that this is the first study that quantifies microhabitat selection patterns of X. globicipitis and does so at several spatial scales.

However, a limitation of this study is that the data were collected from stranded, deceased dolphins, so understanding how these results apply to the general dolphin population needs to be studied further.

Carrillo JM, Overstreet RM, Raga JA, Aznar FJ (2015) Living on the Edge: Settlement Patterns by the Symbiotic Barnacle Xenobalanus globicipitis on Small Cetaceans. PLoS ONE 10(6): e0127367. doi:10.1371/journal.pone.0127367


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
PLOS
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





WATER WORLD
Accelerated warming of the continental shelf off northeast coast
Cape Cod MA (SPX) Jun 18, 2015


A couple of unexplained large scale changes in the waters off the northeast coast of the U.S. have oceanographers perplexed: an accelerated rate of sea level rise compared to most other parts of the world; and the disturbing signs of collapsing fisheries in the region. A new study by physical oceanographers at Woods Hole Oceanographic Institution (WHOI), published in the Journal of Geoph ... read more


WATER WORLD
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

WATER WORLD
NASA Signs Agreements to Advance Agency's Journey to Mars

New study favors cold, icy early Mars

Scientists find methane in Mars meteorites

Red Planet Rising

WATER WORLD
Robotic Tunneler May Explore Icy Moons

How to sail through space on sunbeams - solar satellite leads the way

XCOR Selects Matrix Composites to Develop Lynx Chines

Spacecraft glitch shifts orbiting ISS: Russia

WATER WORLD
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

WATER WORLD
Russian, US Scientists to Cooperate in Space Exploration Despite Sanctions

'Hard landing' as three astronauts return to Earth from ISS

ISS Adjusts Orbit to Evade Space Junk

Space station back on track after mystery Soyuz glitch

WATER WORLD
Garvey Spacecraft selects Pacific Spaceport Complex

Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

NASA issues RFP for New Class of Launch Services

WATER WORLD
Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

Work-experience schoolboy discovers a new planet

Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

WATER WORLD
Mantis shrimp inspires new body armor and football helmet design

A new look at surface chemistry

Video game titans get back in stride at E3

Robot to 3D-print steel canal bridge in Amsterdam




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.