. 24/7 Space News .
EARLY EARTH
Bacteria perfected protein complexes more than 3.5 billion years ago
by Staff Writers
Washington DC (SPX) Jun 10, 2016


This image is of the crystal structure of the reconstructed trytophan synthase complex. Image courtesy Busch et al. For a larger version of this image please go here.

Researchers are resurrecting ancient bacterial protein complexes to determine how 3.5-billion-year-old cells functioned versus cells of today. Surprisingly, they are not that different, reports a study published June 9 in Cell Chemical Biology.

Despite a popular hypothesis that primordial organisms had simple enzyme proteins, evidence suggests that bacteria around 500 million years after life began already had the sophisticated cellular machinery that exists today.

Fossils of 3.5-billion-year-old bacteria are not available, but scientists can reconstruct what their enzymes may have looked like based on phylogenetic trees of proteins from living bacteria.

Comparing the amino acid sequences of more than 50 bacteria helped to computationally generate the sequences for the protein subunits of an enzyme complex that was very likely similar to that found in the bacteria's last common ancestor. The researchers then produced this ancient enzyme complex to study its structure and function.

"There is a generally accepted theory (DOI: 10.1146/annurev.mi.30.100176.002205) that states that very old enzymes were not as sophisticated as they are now," says senior author Reinhard Sterner of the Institute of Biophysics and Physical Biochemistry at the University of Regensburg in Germany.

"But we used the method of ancestral sequence reconstruction to go back as far as possible in evolutionary time to show that the tryptophan synthase complex from the last bacterial common ancestor was sophisticated - characterized by the high enzymatic activity and communication between subunits seen in modern enzyme complexes."

"Our data and similar results that have been found by other people suggest that enzymes were already sophisticated 3.5 billion years ago, but this was a surprise because biological evolution started only about 4 billion years ago," says co-author Rainer Merkl, also at Regensburg.

"We conclude that in this very early phase of biological evolution - between 4 billion and 3.5 billion years ago - we probably have primitive enzymes with low efficiency, but this 500 million years was enough time for these enzymes to become fully sophisticated."

What happened in that 500-million-year gap to place the evolutionary pressures on bacteria to make enzyme complexes is a mystery. Creating these structures is very difficult, as a complex involves multiple subunits that catalyze different reactions in isolation as well as in response to one another.

Once formed, however, these complexes have not been seriously altered in billions of years of subsequent evolution, proving their efficiency.

Going forward, Sterner and his colleagues want to continue using the ancestral sequence reconstruction method to better understand the exact steps that led to the formation of the tryptophan synthase complex and its adaptation to specific habitats.

Cell Chemical Biology, Busch et al., "Ancestral Tryptophan Synthase Reveals Functional Sophistication of Primordial Enzyme Complexes"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Cell Press
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Ancient ants leaving a modern trail
Onna, Japan (SPX) Jun 10, 2016
It is thought that ants evolved about 150 million years ago and have risen to dominance in the past 60 million years. They are now everywhere and while they are not always welcome on your kitchen counter, they are critical to ecosystems around the world for many roles, including seed dispersal and decomposition. There are a variety of factors that can impact diversity in geographically-clustered ... read more


EARLY EARTH
US may approve private venture moon mission: report

Fifty Years of Moon Dust

Airbus Defence and Space to guide lunar lander to the Moon

A new, water-logged history of the Moon

EARLY EARTH
Musk explains his 'cargo route' to Mars

NASA Mars Rover Descends Plateau, Turns Toward Mountain

Remarkably diverse flora in Utah, USA, trains scientists for future missions on Mars

NASA Mars Orbiters Reveal Seasonal Dust Storm Pattern

EARLY EARTH
Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

Second Starliner Begins Assembly in Florida Factory

Mexican engineer extracts gas from urine to heat shower

EARLY EARTH
Experts Fear Chinese Space Station Could Crash Into Earth

Bolivia to pay back loan to China for Tupac Katari satellite

China plans 5 new space science satellites

NASA Chief: Congress Should Revise US-China Space Cooperation Law

EARLY EARTH
Cygnus space capsule departs International Space Station

Russian, US Astronauts to Return From ISS on June 18

Astronauts enter inflatable room at space station

First steps into BEAM will expand the frontiers of habitats for space

EARLY EARTH
SpaceX launches satellites but fails to recover rocket

Russian Proton-M Rocket Puts US Intelsat DLA-2 Satellite Into Orbit

US Senate reaches compromise on Russian rocket engines

MUOS-5 satellite encapsulated for launch

EARLY EARTH
New planet is largest discovered that orbits 2 suns

Smaller Stars Pack Big X-ray Punch for Would-Be Planets

Clouds, haze cause astronomers to overestimate size of exoplanets

Planet-Devouring Star Reveals Possible Limestone Crumbs

EARLY EARTH
Can computers do magic?

New maths accurately captures liquids and surfaces moving in synergy

Europe Develops Self-removal Technology for Spacecraft

Thales unveils Ground Master 60 mobile radar









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.