Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Back to future with Roman architectural concrete
by Staff Writers
Berkeley CA (SPX) Dec 23, 2014


Ancient Roman concrete consists of coarse chunks of volcanic tuff and brick bound together by a volcanic ash-lime mortar that resists microcracking, a key to its longevity and endurance. Image courtesy Roy Kaltschmidt, Berkeley Lab.

No visit to Rome is complete without a visit to the Pantheon, Trajan's Markets, the Colosseum, or the other spectacular examples of ancient Roman concrete monuments that have stood the test of time and the elements for nearly two thousand years.

A key discovery to understanding the longevity and endurance of Roman architectural concrete has been made by an international and interdisciplinary collaboration of researchers using beams of X-rays at the Advanced Light Source (ALS) of the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab).

Working at ALS beamline 12.3.2, a superconducting bending magnet X-ray micro-diffraction beamline, the research team studied a reproduction of Roman volcanic ash-lime mortar that had been previously subjected to fracture testing experiments at Cornell University. In the concrete walls of Trajan's Markets, constructed around 110 CE, this mortar binds cobble-sized fragments of tuff and brick.

Through observing the mineralogical changes that took place in the curing of the mortar over a period of 180 days and comparing the results to 1,900 year old samples of the original, the team discovered that a crystalline binding hydrate prevents microcracks from propagating.

"The mortar resists microcracking through in situ crystallization of platy stratlingite, a durable calcium-alumino-silicate mineral that reinforces interfacial zones and the cementitious matrix," says Marie Jackson, a faculty scientist with the University of California (UC) Berkeley's Department of Civil and Environmental Engineering who led this study.

"The dense intergrowths of the platy crystals obstruct crack propagation and preserve cohesion at the micron scale, which in turn enables the concrete to maintain its chemical resilience and structural integrity in a seismically active environment at the millennial scale."

Jackson, a volcanologist by training who led an earlier study at the ALS on Roman seawater concrete, is the lead author of a paper describing this study in the Proceedings of the National Academy of Sciences (PNAS) titled "Mechanical Resilience and Cementitious Processes in Imperial Roman Architectural Mortar." Co-authors of the paper are Eric Landis, Philip Brune, Massimo Vitti, Heng Chen, Qinfei Li, Martin Kunz, Hans-Rudolf Wenk, Paulo Monteiro and Anthony Ingraffea.

The mortars that bind the concrete composites used to construct the structures of Imperial Rome are of keen scientific interest not just because of their unmatched resilience and durability, but also for the environmental advantages they offer. Most modern concretes are bound by limestone-based Portland cement.

Manufacturing Portland cement requires heating a mix of limestone and clay to 1,450 degrees Celsius (2,642 degrees Fahrenheit), a process that releases enough carbon - given the 19 billion tons of Portland cement used annually - to account for about seven-percent of the total amount of carbon emitted into the atmosphere each year.

Roman architectural mortar, by contrast, is a mixture of about 85-percent (by volume) volcanic ash, fresh water, and lime, which is calcined at much lower temperature than Portland cement. Coarse chunks of volcanic tuff and brick compose about 45-to-55-percent (by volume) of the concrete. The result is a significant reduction in carbon emissions.

"If we can find ways to incorporate a substantial volumetric component of volcanic rock in the production of specialty concretes, we could greatly reduce the carbon emissions associated with their production also improve their durability and mechanical resistance over time," Jackson says.

As part of their study, Jackson and her collaborators at UC Berkeley used ALS beamline 12.3.2 to make X-ray micro-diffraction measurements of slices of the Roman mortar that were only about 0.3 millimeters thick.

"We obtained X-ray diffractograms for many different points within a given cementitious microstructure," Jackson says. "This enabled us to detect changes in mineral assemblages that gave precise indications of chemical processes active over very small areas."

The mineralogical changes that Jackson and her collaborators observed showed the mortar reproduction gaining strength and toughness over 180 days as calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder coalesced and stratlingite crystals grew in interfacial zones between volcanic scoria and the mortar matrix.

The toughening of these interfacial zones is reflected in the bridging crack morphology, which was measured by co-author Landis at the University of Maine, using computed tomography scans of the fractured mortar specimens.

These experimental results correlate well with computations of increasing fracture energy determined by co-author Brune, now at Dupont Technologies. The stratlingite crystals show no corrosion and their smooth surfaces suggest long-term stability, similar to geological stratlingite that persists for hundreds of thousands of years.

"The in situ crystallization of the stratlingite crystals produces interfacial zones that are very different from any interfacial microstructure observed in Portland cement concretes," Jackson says. "High porosity along the interfacial zones of inert aggregates in Portland cement concrete creates the sites where crack paths first nucleate and propagate."

A future challenge for researchers, Jackson says, will be to "find ways to activate aggregates, as slag or as volcanic ash for example, in innovative concretes so that these can develop stratlingite reinforcements in interfacial zones like the Roman architectural mortars."

The fracture testing experiments at Cornell University were led by co-author Ingraffea. The samples of mortar from Trajan's Markets were provided by co-author Vitti and the Sovrintendenza Capitolina di Roma Capitale. Co-author Kunz is the principal scientist at ALS beamline 12.3.2.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DOE/Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Earth's most abundant mineral finally has a name
Argonne IL (SPX) Dec 18, 2014
An ancient meteorite and high-energy X-rays have helped scientists conclude a half century of effort to find, identify and characterize a mineral that makes up 38 percent of the Earth. And in doing so, a team of scientists led by Oliver Tschauner, a mineralogist at the University of Las Vegas, clarified the definition of the Earth's most abundant mineral - a high-density form of magnesium ... read more


TECH SPACE
Moon Express testing compact lunar lander at Kennedy

UK Plans to Drill Into Moon, Explore Feasibility of Manned Base

Carnegie Mellon Unveils Lunar Rover "Andy"

Why we should mine the moon

TECH SPACE
NASA, Planetary Scientists Find Meteoritic Evidence of Mars Water Reservoir

Opportunity drives on in no-flash mode

Australian university students aim to generate first 'breathable' air on Mars

Goddard instrument makes first detection of organic matter on Mars

TECH SPACE
NASA releases video of Orion spacecraft re-entry from astronaut's perspective

XCOR Announces Further Progress on XCOR Lynx Spacecraft

Russia, US to Cooperate on Orion Spacecraft Modernization

NASA Voyager: 'Tsunami Wave' Still Flies Through Interstellar Space

TECH SPACE
China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

Service module of China's returned lunar orbiter reaches L2 point

TECH SPACE
NASA, SpaceX Update Launch of Fifth SpaceX Resupply Mission to ISS

Fifth SpaceX Mission Lets the CATS Out on the International Space Station

Politics no problem, say US and Russian spacefarers

ISS Experiment May Hold Key to Alzheimer's Cause

TECH SPACE
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Russian Space Agency Pushes Back Earth Imaging Satellite Launch to Friday

State Spaceports Receive Federal Funding

Arianespace sets new operational benchmarks on its latest Soyuz success

TECH SPACE
Kepler Proves It Can Still Find Planets

NASA's Kepler Reborn, Makes First Exoplanet Find of New Mission

Super-Earth spotted by ground-based telescope, a first

Astronomers spot Pluto-size objects swarming about young sun

TECH SPACE
Breakthrough in predictions of pressure-dependent combustion reactions

Back to future with Roman architectural concrete

Earth's most abundant mineral finally has a name

'Mind the gap' between atomically thin materials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.