Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Australian teams set new records for silicon quantum computing
by Staff Writers
Sydney, Australia (SPX) Oct 15, 2014


L-R, back row) Andrew Dzurak and Andrea Morello, with paper lead authors (L-R) Menno Veldhorst and Juha Muhonen. Image courtesy Paul Henderson-Kelly.

Two research teams working in the same laboratories at UNSW Australia have found distinct solutions to a critical challenge that has held back the realisation of super powerful quantum computers.

The teams created two types of quantum bits, or "qubits" - the building blocks for quantum computers - that each process quantum data with an accuracy above 99%. The two findings have been published simultaneously in the journal Nature Nanotechnology.

"For quantum computing to become a reality we need to operate the bits with very low error rates," says Scientia Professor Andrew Dzurak, who is Director of the Australian National Fabrication Facility at UNSW, where the devices were made.

"We've now come up with two parallel pathways for building a quantum computer in silicon, each of which shows this super accuracy," adds Associate Professor Andrea Morello from UNSW's School of Electrical Engineering and Telecommunications.

The UNSW teams, which are also affiliated with the ARC Centre of Excellence for Quantum Computation and Communication Technology, were first in the world to demonstrate single-atom spin qubits in silicon, reported in Nature in 2012 and 2013.

Now the team led by Dzurak has discovered a way to create an "artificial atom" qubit with a device remarkably similar to the silicon transistors used in consumer electronics, known as MOSFETs. Post-doctoral researcher Menno Veldhorst, lead author on the paper reporting the artificial atom qubit, says, "It is really amazing that we can make such an accurate qubit using pretty much the same devices as we have in our laptops and phones".

Meanwhile, Morello's team has been pushing the "natural" phosphorus atom qubit to the extremes of performance. Dr Juha Muhonen, a post-doctoral researcher and lead author on the natural atom qubit paper, notes: "The phosphorus atom contains in fact two qubits: the electron, and the nucleus. With the nucleus in particular, we have achieved accuracy close to 99.99%. That means only one error for every 10,000 quantum operations."

Dzurak explains that, "even though methods to correct errors do exist, their effectiveness is only guaranteed if the errors occur less than 1% of the time. Our experiments are among the first in solid-state, and the first-ever in silicon, to fulfill this requirement."

The high-accuracy operations for both natural and artificial atom qubits is achieved by placing each inside a thin layer of specially purified silicon, containing only the silicon-28 isotope. This isotope is perfectly non-magnetic and, unlike those in naturally occurring silicon, does not disturb the quantum bit. The purified silicon was provided through collaboration with Professor Kohei Itoh from Keio University in Japan.

The next step for the researchers is to build pairs of highly accurate quantum bits. Large quantum computers are expected to consist of many thousands or millions of qubits and may integrate both natural and artificial atoms.

Morello's research team also established a world-record "coherence time" for a single quantum bit held in solid state. "Coherence time is a measure of how long you can preserve quantum information before it's lost," Morello says. The longer the coherence time, the easier it becomes to perform long sequences of operations, and therefore more complex calculations.

The team was able to store quantum information in a phosphorus nucleus for more than 30 seconds. "Half a minute is an eternity in the quantum world. Preserving a 'quantum superposition' for such a long time, and inside what is basically a modified version of a normal transistor, is something that almost nobody believed possible until today," Morello says.

"For our two groups to simultaneously obtain these dramatic results with two quite different systems is very special, in particular because we are really great mates," adds Dzurak.

.


Related Links
University of New South Wales
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
A novel platform for future spintronic technologies
Lausanne, Switzerland (SPX) Oct 15, 2014
Spintronics is an emerging field of technology where devices work by manipulating the spin of electrons rather than their charge. The field can bring significant advantages to computer technology, combining higher speeds with lower energy consumption. Spintronic circuits need ways to control electron spin without interference from electron charge. Scientists at EPFL, working with Universit ... read more


CHIP TECH
China's ailing moon rover weakening

NASA Mission Finds Widespread Evidence of Young Lunar Volcanism

Russian Luna-25 Mission to Cost Billions

New Batch of Lunar Soil to be Delivered to Earth in 2023-2025

CHIP TECH
Mars One -- and done?

MAVEN spacecraft's first look at Mars holds surprises

NASA Mission Provides Its First Look at Martian Upper Atmosphere

Mars Reconnaissance Orbiter Studies Comet Flyby

CHIP TECH
"Houston: We Have A Problem...But No Worries, Our Virtual Therapist Is On It"

Space Trips To Change World For Better: Virgin Galactic CEO

NASA Exercises Authority to Proceed with Commercial Crew Contracts

Li pledges China will boost innovation, creativity

CHIP TECH
Work completed on satellite launch center in Hainan

China to launch new marine surveillance satellites in 2019

China Successfully Orbits Experimental Satellite

China's first space lab in operation for over 1000 days

CHIP TECH
ISS Astronauts Wrap Up Preps for Wednesday Spacewalk

Progress-M Cargo Ship To Undock From ISS On Oct 27

ISS Spacewalkers Replace Power Regulator, Move Equipment

A Different Kind of Green Movement: Seedling Growth in Space

CHIP TECH
China Completes Country's Largest Spaceport

Argentina launches geostationary satellite

Arianespace's December mission for DIRECTV-14 and GSAT-16 satellites in process

Inquiry reveals design stage shortcoming in Galileo navigation system

CHIP TECH
Astronomers Spot Faraway Uranus-Like Planet

Getting To Know Super-Earths

NASA's Hubble Maps the Temperature and Water Vapor on an Extreme Exoplanet

Hubble project maps temperature, water vapor on wild exoplanet

CHIP TECH
Argentina launches its first telecom satellite

JLENS radar data integrates with NORAD system

Light bending material facilitates the search for new particles

Engineers find a way to win in laser performance by losing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.