. 24/7 Space News .
EARTH OBSERVATION
Atmospheric aerosol formation from biogenic vapors is strongly affected by air pollutants
by Staff Writers
Helsinki, Finland (SPX) Dec 17, 2018

file image

The formation of new aerosol particles is a complicated process. Researchers have only recently started to understand this process on a molecular level after instruments able to detect nanometer-scale particles became available.

The human population has altered the composition of atmospheric gas in several ways. Sulfur dioxide from industrial emissions, nitrogen oxides from traffic, and ammonia from agriculture can all affect particle formation after chemical reactions in the atmosphere.

These gases can also interact with organic vapors, which originate mainly from forests and vegetation. The atmosphere contains thousands of different organic compounds, but only a small fraction of them can form and grow particles.

Earlier it was thought that new particle formation always requires sulfuric acid, which forms from the oxidation of sulfur dioxide. Later, it was found that certain organic vapors can also form particles.

In this study, the researchers found that in continental moderately polluted atmospheres, e.g. in the Finnish boreal forest, particles are formed most efficiently when sulfuric acid, ammonia and organic vapors are all present simultaneously. Nitrogen oxides, on the other hand, decreased the amount of newly formed particles.

The results help to understand how new particle formation and the associated climate impact will change if air pollution levels decrease in the future due to stricter emission control. Aerosol particles can affect the climate by scattering solar radiation and by acting as seed particles for cloud droplets. The aerosol-cloud-climate interactions are still associated with large uncertainties in current climate models.

The laboratory experiments leading to these results were conducted at the European Center for Nuclear Research, CERN, in Geneva, which has one of the best laboratory facilities for detailed particle formation studies. The study was led by Associate Professor Katrianne Lehtipalo from the University of Helsinki.

"We wanted to create the boreal forest atmosphere in our chamber," she says. Long-term field measurements at the Hyytiala SMEAR II station in southern Finland helped the researchers to identify the right conditions for particle formation.

"Particle formation is a delicate process, and it took us a while to find the correct gas mixture, but in the end we were able to replicate atmospheric observations almost perfectly," Lehtipalo says.

The study was conducted in collaboration between 25 different institutes in 9 different countries. Article: Lehtipalo, K. et al. Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances 12.12.2018.

Research paper


Related Links
University of Helsinki
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
NASA Science Shows Human Impact of Clean Air Policies
Washington DC (SPX) Dec 05, 2018
As local, federal, and international policies targeting the quality of the air we breathe continue to evolve, questions arise of how effective existing policies have been in improving human health. For example, how many lives have been saved by tough air pollution policies? How many illnesses have been caused by lax policies? NASA recently initiated two projects to provide some answers drawing on its scientific expertise and global observations of air pollution from spacecraft orbiting Earth. It i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Queen guitarist Brian May releases tribute to NASA spacecraft

A method to monitor indoor crop health no matter what planet you're on

Super-Fast 3-Hour Manned Flights to ISS to Begin in 18 Months

Astronauts land from ISS stint marred by air leak, rocket failure

EARTH OBSERVATION
NASA's Plum Brook Station Completes Acoustic Test for SLS

Elon Musk's SpaceX set to raise $500 mn: report

Russia to Decommission Carrier Vehicle With Ukraine-Made Components

Russia's Vostochny Cosmodrome to Have Only One Space Launch in 2019

EARTH OBSERVATION
InSight Engineers Have Made a Martian Rock Garden

Opportunity team performs more frequent communication attempts throughout each day

Planetary scientists assist in capturing image of Insight from orbit

NASA's InSight takes its first selfie

EARTH OBSERVATION
China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

EARTH OBSERVATION
Scaled back OneWeb constellation Not to affect number of Soyuz boosters

Update from ESA Council, December 2018

CAT rules in favour of Ofcom's EAN authorisation decision

Fleet Space Technologies' Centauri launched aboard SpaceX Falcon 9

EARTH OBSERVATION
System monitors radiation damage to materials in real-time

Celestia wins major ESA contract for UK

The stiffest porous lightweight materials ever

NYU researchers pioneer machine learning to speed chemical discoveries, reduce waste

EARTH OBSERVATION
Narrowing the universe in the search for life

A young star caught forming like a planet

Planets with Oxygen Don't Necessarily Have Life

Where did the hot Neptunes go

EARTH OBSERVATION
Most Distant Solar System Object Ever Observed

New Horizons Takes the Inside Course to Ultima Thule

A nuclear-powered 'tunnelbot' to search for life on Jupiter's icy moon Europa

NASA's Juno mission halfway to Jupiter science









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.