Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Astronomers put forward new theory on size of black holes
by Staff Writers
Leicester UK (SPX) Mar 28, 2012


Black holes grow by sucking in gas. This forms a disc around the hole and spirals in, but usually so slowly that the holes could not have grown to these huge masses in the entire age of the universe.

Astronomers have put forward a new theory about why black holes become so hugely massive - claiming some of them have no 'table manners', and tip their 'food' directly into their mouths, eating more than one course simultaneously.

Researchers from the UK and Australia investigated how some black holes grow so fast that they are billions of times heavier than the sun.

The team from the University of Leicester (UK) and Monash University in Australia sought to establish how black holes got so big so fast. Their research is due to published in the Monthly Notices of the Royal Astronomical Society.

The research was funded by the UK Science and Technology Facilities Council.

Professor Andrew King from the Department of Physics and Astronomy, University of Leicester, said: "Almost every galaxy has an enormously massive black hole in its centre. Our own galaxy, the Milky Way, has one about four million times heavier than the sun. But some galaxies have black holes a thousand times heavier still. We know they grew very quickly after the Big Bang.''

"These hugely massive black holes were already full--grown when the universe was very young, less than a tenth of its present age."

Black holes grow by sucking in gas. This forms a disc around the hole and spirals in, but usually so slowly that the holes could not have grown to these huge masses in the entire age of the universe. `We needed a faster mechanism,' says Chris Nixon, also at Leicester, "so we wondered what would happen if gas came in from different directions."

Nixon, King and their colleague Daniel Price in Australia made a computer simulation of two gas discs orbiting a black hole at different angles. After a short time the discs spread and collide, and large amounts of gas fall into the hole. According to their calculations black holes can grow 1,000 times faster when this happens.

"If two guys ride motorbikes on a Wall of Death and they collide, they lose the centrifugal force holding them to the walls and fall," says King. The same thing happens to the gas in these discs, and it falls in towards the hole.

This may explain how these black holes got so big so fast. "We don't know exactly how gas flows inside galaxies in the early universe," said King, "but I think it is very promising that if the flows are chaotic it is very easy for the black hole to feed."

The two biggest black holes ever discovered are each about ten billion times bigger than the Sun.

Movie simulations can be found here. Figures are available in the original paper.

.


Related Links
University of Leicester
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Ultra-fast Outflows Help Monster Black Holes Shape Their Galaxies
Greenbelt MD (SPX) Feb 29, 2012
A curious correlation between the mass of a galaxy's central black hole and the velocity of stars in a vast, roughly spherical structure known as its bulge has puzzled astronomers for years. An international team led by Francesco Tombesi at NASA's Goddard Space Flight Center in Greenbelt, Md., now has identified a new type of black-hole-driven outflow that appears to be both powerful enough and ... read more


TIME AND SPACE
NASA's Grail MoonKam Returns First Student-Selected Lunar Images

Ecliptic "MoonKAM" Systems Begin Operations in Lunar Orbit

Two New NASA LRO Videos: See Moon's Evolution, Take a Tour

China to get lunar soil

TIME AND SPACE
A glow in the Martian night throws light on atmospheric circulation

Mars Science Laboratory Adjusts Orbital Path And Tests Instruments

Geologists discover new class of landform - on Mars

Red Food For the Red Planet

TIME AND SPACE
ICAP Ocean Tomo Auctions NASA Software Patent Portfolios

Not your average heat shield

NASA Seeks Space Launch System Advanced Development Solutions

Patent requests in Europe reach record in 2011

TIME AND SPACE
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

TIME AND SPACE
Beaming Success for ISS Fans

ESA Cargo Ship Carries Research and Technology Investigations to ISS

Japan Shares ISS SMILES via Atmospheric Data Distribution

ATV Edoardo Amaldi set for liftoff

TIME AND SPACE
ILS Proton Launches Intelsat 22

US ramping up private sector's role in spaceflight

Europe's smart supply ship on its way to Space Station

Third Ariane 5 ready for launch in 2012

TIME AND SPACE
Runaway Planets Zoom at a Fraction of Light-Speed

Some orbits more popular than others in solar systems

Herschel's new view on giant planet formation

Kepler Statistical Analysis Suggests Earthlike Planets Extremely Rare

TIME AND SPACE
Magnetic field researchers target 100-tesla goal

AMPAC-ISP Hydrazine Propulsion Module Completes Pre-Ship Review

Apple offers to refund Australian iPad customers

Soviet Weather Satellite Falls in Antarctica




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement