Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




STELLAR CHEMISTRY
Astronomers find solar storms behave like supernovae
by Staff Writers
London UK (SPX) Feb 26, 2014


The plasma falling into the Sun split apart into 'fingers', like ink dops falling through water. Photo courtesy NASA/SDO.

Researchers at UCL have studied the behaviour of the Sun's coronal mass ejections, explaining for the first time the details of how these huge eruptions behave as they fall back onto the Sun's surface. In the process, they have discovered that coronal mass ejections have a surprising twin in the depths of space: the tendrils of gas in the Crab Nebula, which lie 6500 light-years away and are millions of times larger.

On 7 June 2011, the biggest ejection of material ever observed erupted from the surface of the Sun. Over the days that followed, the plasma belched out by the Sun made its way out into space. But most of the material propelled up from the Sun's surface quickly fell back towards our star's surface.

For the solar physicists at UCL's Mullard Space Science Laboratory, watching these solar fireworks was a unique opportunity to study how solar plasma behaves.

"We've known for a long time that the Sun has a magnetic field, like the Earth does. But in places it's far too weak for us to measure, unless we have something falling through it. The blobs of plasma that rained down from this beautiful explosion were the gift we'd been waiting for", says David Williams, one of the study's authors.

Since 2010, the NASA Solar Dynamics Observatory (SDO) has been constantly photographing the surface of the Sun. To our eyes, our star seems almost unchanging, with occasional fleeting sunspots the only changes that can be seen without special apparatus.

But the SDO's instruments can cut through the dazzling brightness, magnify the detail and see wavelengths of light which are blocked by the Earth's atmosphere. This combination of high-quality imaging and constant monitoring means that scientists can now see the detail of how the Sun's dynamic surface changes over time.

The 7 June 2011 eruption was by some margin the biggest recorded since this constant monitoring began, meaning the huge cascade of matter that fell back into the Sun following the eruption was a unique opportunity to study, on an unusually large scale, the fluid dynamics of these phenomena.

"We noticed that the shape of the plume of plasma was quite particular," says Jack Carlyle, lead author of the study. "As it fell into the Sun, it repeatedly split apart like drops of ink falling through water, with fingers of material branching out. It didn't stick together. It's a great example of an effect where light and heavy fluids mix."

Less dense materials typically float on top of denser ones without mixing together, for example oil sitting on water, or layers of different liqueurs in a cocktail. Change the order by putting the denser fluid on top, however, and the denser one will quickly fall through the less-dense one until their positions are reversed. The complex pattern formed by the denser fluid as it repeatedly splits and branches into ever-finer 'fingers' of matter, is caused by a phenomenon known as the Rayleigh-Taylor instability.

The team noticed in SDO's high-resolution images that the falling plasma clearly underwent the Rayleigh-Taylor instability as it returned to the Sun's surface. This is as would be expected - the solar plasma is denser than the solar atmosphere it is falling through. In space, a similar effect has been observed before, albeit on a much larger scale, in the Crab Nebula.

The Crab Nebula is the remnant of a supernova which exploded in the 10th century. In the millennium that has followed the explosion, denser matter has started to fall back into the centre of the nebula, exhibiting the same finger-like structures as the team observed in the Sun.

A major study of the Crab Nebula in 1996 found that the Rayleigh-Taylor instability in the Crab Nebula was actually slightly modified. The highly magnetised environment in the nebula changes the proportions of the fingers, making them fatter than they would be otherwise.

The UCL team found that the same effect was going on in the 7 June 2011 coronal mass ejection: even in an area where the Sun's magnetic field was weak, it was modifying the Rayleigh-Taylor effect, changing the shape of the plume of plasma as it fell back into the Sun.

This is the most spectacular example of the effect ever observed on the Sun.

The study is published in the 20 February issue of the Astrophysical Journal. The research appears in a paper entitled "Investigating the dynamics and density evolution of returning plasma blobs from the 2011 June 7 eruption", published in the 20 February 2014 issue of the Astrophysical Journal.

.


Related Links
Faculty of Mathematical and Physical Sciences - University College London
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





UAV Payloads 2014, 24 - 25 June - London, UK
STELLAR CHEMISTRY
The Hubble Showdown: Starbursts versus Monsters
Baltimore MD (SPX) Feb 25, 2014
The dominating figure in the middle of this new Hubble image is a galaxy known as MCG-03-04-014. It belongs to a class of galaxies called luminous infrared galaxies - galaxies that are incredibly bright in the infrared part of the spectrum. This galaxy's status as a luminous infrared galaxy makes it part of an interesting astronomical question: starbursts versus monsters, a debate over how ... read more


STELLAR CHEMISTRY
China Focus: Uneasy rest begins for China's troubled Yutu rover

Is Yutu Stuck?

Japan's Pocari Sweat bound for the moon: maker

Lunar ownership laws: a future necessity?

STELLAR CHEMISTRY
NASA Mars Orbiter Views Opportunity Rover on Ridge

Curiosity Adds Reverse Driving for Wheel Protection

Curiosity Drives On After Crossing Martian Dune

The World Above and Beyond

STELLAR CHEMISTRY
DARPA Open Catalog Makes Agency-Sponsored Software and Publications Available to All

Orion Underway Recovery Testing Begins off the Coast of California

Inside astronaut Alexander's head

NASA Welcomes University Participants to Develop Science Payloads

STELLAR CHEMISTRY
No Call for Yutu

What's up, Yutu

China's Jade Rabbit rover comes 'back to life'

Yutu Awakes

STELLAR CHEMISTRY
Space suit leak happened before, NASA admits

NASA Seeks US Industry Feedback on Options for Future ISS Cargo Services

NASA, International Space Station Partners Announce Future Crew Members

Andrews Space Cargo Module Power Unit Provides Power For Payloads Bound For ISS

STELLAR CHEMISTRY
'Mission of Firsts' Showcased New Range-Safety Technology at NASA Wallops

First Copernicus satellite at launch site

Arianespace to launch OPTSAT 3000 and VENuS satellites

Lighter engines a headache for satellite launcher Ariane

STELLAR CHEMISTRY
NASA cries planetary 'bonanza' with 715 new worlds

Detection of Water Vapor in the Atmosphere of a Hot Jupiter

ESA selects planet-hunting PLATO mission

Rife with hype, exoplanet study needs patience and refinement

STELLAR CHEMISTRY
EIAST showcases DubaiSat-2 results, plans for KhalifaSat at space conference in Singapore

A New Way to Create Porous Materials

USAF reveals 'neighborhood watch' satellite program

UT Dallas-led team makes powerful muscles from fishing line and sewing thread




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.