. 24/7 Space News .
STELLAR CHEMISTRY
Astronomers Find Faintest Early Galaxies Yet, Probe How the Early Universe Lit Up
by Staff Writers
Austin TX (SPX) Feb 10, 2017


A Hubble Space Telescope view of the galaxy cluster MACS 0416 is annotated in cyan and magenta to show how it acts as a 'gravitational lens,' magnifying more distant background galaxies. Cyan highlights the distribution of mass in the cluster, mostly in the form of dark matter. Magenta highlights the degree to which the background galaxies are magnified, which is related to the mass distribution. Image courtesy STScI/NASA/CATS Team/R. Livermore (UT Austin). For a larger version of this image please go here.

Astronomers at The University of Texas at Austin have developed a new technique to discover the faintest galaxies yet seen in the early universe -10 times fainter than any previously seen. These galaxies will help astronomers probe a little-understood, but important period in cosmic history. Their new technique helps probe the time a billion years after the Big Bang, when the early, dark universe was flooded with light from the first galaxies.

Rachael Livermore and Steven Finkelstein of the UT Austin Astronomy Department, along with Jennifer Lotz of the Space Telescope Science Institute, went looking for these faint galaxies in images from Hubble Space Telescope's Frontier Fields survey. "These galaxies are actually extremely common," Livermore said. "It's very satisfying being able to find them."

These faint, early galaxies gave rise to the Epoch of Reionization, when the energetic radiation they gave off bombarded the gas between all galaxies in the universe. This caused the atoms in this diffuse gas to lose their electrons (that is, become ionized).

Finkelstein explained why finding these faint galaxies is so important. "We knew ahead of time that for our idea of galaxy-powered reionization to work, there had to be galaxies a hundred times fainter than we could see with Hubble," he said, "and they had to be really, really common." This was why the Hubble Frontier Fields program was created, he said.

Lotz leads the Hubble Frontier Fields project, one of the telescope's largest to date. In it, Hubble photographed several large galaxy clusters. These were selected to take advantage of their enormous mass which causes a useful optical effect, predicted by Albert Einstein.

A galaxy cluster's immense gravity bends space, which magnifies light from more-distant galaxies behind it as that light travels toward the telescope. Thus the galaxy cluster acts as a magnifying glass, or a "gravitational lens," allowing astronomers to see those more-distant galaxies - ones they would not normally be able to detect, even with Hubble.

Even then, though, the lensed galaxies were still just at the cusp of what Hubble could detect.

"The main motivation for the Frontier Fields project was to search for these extremely faint galaxies during this critical period in the universe's history," Lotz said. "However, the primary difficulty with using the Frontier Field clusters as an extra magnifying glass is how to correct for the contamination from the light of the cluster galaxies."

Livermore elaborates: "The problem is, you're trying to find these really faint things, but you're looking behind these really bright things. The brightest galaxies in the universe are in clusters, and those cluster galaxies are blocking the background galaxies we're trying to observe. So what I did was come up with a method of removing the cluster galaxies" from the images.

Her method uses modeling to identify and separate light from the foreground galaxies (the cluster galaxies) from the light coming from the background galaxies (the more-distant, lensed galaxies).

According to Lotz, "This work is unique in its approach to removing this light. This has allowed us to detect more and fainter galaxies than seen in previous studies, and to achieve the primary goal for the Frontier Fields survey."

Livermore and Finkelstein have used the new method on two of the galaxy clusters in the Frontier Fields project: Abell 2744 and MACS 0416. It enabled them to identify faint galaxies seen when the universe was about a billion years old, less than 10 percent of its current age - galaxies 100 times fainter than those found in the Hubble Ultra Deep Field, for instance, which is the deepest image of the night sky yet obtained.

Their observations showed that these faint galaxies are extremely numerous, consistent with the idea that large numbers of extremely faint galaxies were the main power source behind reionization.

There are four Frontier Fields clusters left, and the team plans to study them all with Livermore's method. In future, she said, they would like to use the James Webb Space Telescope to study even fainter galaxies.

The work is published in a recent issue of The Astrophysical Journal.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
McDonald Observatory
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Scientists Estimate Solar Nebula's Lifetime
Boston MA (SPX) Feb 08, 2017
About 4.6 billion years ago, an enormous cloud of hydrogen gas and dust collapsed under its own weight, eventually flattening into a disk called the solar nebula. Most of this interstellar material contracted at the disk's center to form the Sun, and part of the solar nebula's remaining gas and dust condensed to form the planets and the rest of our solar system. Now scientists from MIT and ... read more


STELLAR CHEMISTRY
Looking to the future: Russia, US mull post-ISS cooperation in space

A new recruit for ESA's astronaut corps

The Outer Space Treaty has been remarkably successful - but is it fit for the modern age?

Full Braking at Alpha Centauri

STELLAR CHEMISTRY
Russian Space Agency Develops Program to Improve Carrier Rocket Assembly Quality

Commercial Launch of Proton-M Carrier Rocket Planned For Early April - Roscosmos

India to launch record 104 satellites next week

ISRO tests C25 Cryogenic Upper Stage of GSLV MkIII

STELLAR CHEMISTRY
ISRO saves its Mars mission spacecraft from eclipse

Mars Reconnaissance Orbiter plays crucial role in search for landing sites

UAE Aims to Launch Its First Ever Mars Mission in 2020

Opportunity Takes Advantage of her Location to do a Mini Science Campaign

STELLAR CHEMISTRY
China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

STELLAR CHEMISTRY
NASA seeks partnerships with US companies to advance commercial space technologies

An exciting year in space for Intelsat

Iridium Adds Eighth Launch with SpaceX for Satellite Rideshare

Space, Ukrainian-style: Through Crisis to Revival

STELLAR CHEMISTRY
New high-performance computing cluster at the Albert Einstein Institute in Potsdam

Japan's troubled 'space junk' mission fails

New material that contracts when heated holds great industrial potential

Flipping the switch on ammonia production

STELLAR CHEMISTRY
NASA finds planets of red dwarf stars may face oxygen loss in habitable zones

Santa Fe Institute researchers look for life's lower limits

Dedicated Planet Imager Opens Its Eyes to Other Worlds

New planet imager delivers first science at Keck

STELLAR CHEMISTRY
NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby

It's Never 'Groundhog Day' at Jupiter

Public to Choose Jupiter Picture Sites for NASA Juno









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.