Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




STELLAR CHEMISTRY
Computer Models Explain How Galaxies Formed and Evolved
by Carl Blesch
New Brunswick NJ (SPX) Feb 01, 2013


Rachel Somerville is a newcomer to Rutgers, appointed in October 2011 to the George A. and Margaret M. Downsbrough Chair in Astrophysics.

When most people think of astronomers, they envision scientists who spend time peering at stars and galaxies through telescopes on high mountain tops. Rutgers astronomer Rachel Somerville depends on those who make such observations, both from telescopes on the ground and orbiting earth in space. But her primary tool for understanding how galaxies formed billions of years ago - and how they continue to evolve in our contemporary universe - are large computers.

Instruments such as the Hubble Space Telescope peer to the farthest reaches of space, opening windows in time that reveal how galaxies looked as they took shape in a young universe. Computer modeling then helps astronomers make sense of what they're seeing and build a better understanding of how today's galaxies first formed.

Somerville, a professor of astrophysics in the Department of Physics and Astronomy, School of Arts and Sciences, creates computer models or simulations of the physical principles that underlie galaxy formation. Her simulations model how gases such as hydrogen and helium coalesce into stars and galaxies and how exploding stars and black holes impact their galactic environments.

At a scientific conference earlier this month, colleagues recognized the importance of Somerville's work when the American Astronomical Society and the American Institute of Physics awarded her the Dannie Heineman Prize in Astrophysics. The prize, which recognizes exceptional work by mid-career astronomers, cited Somerville for providing fundamental insights into galaxy formation and evolution using modeling, simulations, and observations.

Somerville is a newcomer to Rutgers, appointed in October 2011 to the George A. and Margaret M. Downsbrough Chair in Astrophysics. As a theoretical astronomer, she values the opportunities she gets to interact with observational astronomers at Rutgers and elsewhere who provide her with new data that make her models more comprehensive and robust.

"It's hard to make models that fit all the observations," said Somerville. "I try to go the extra distance to connect what the models predict with things that we can actually observe."

Astronomers cannot see any single galaxy evolve through a telescope. Modeling galaxy formation is essential to infer the evolutionary paths that different types of galaxies follow.

"We see galaxies at different points in their lifetimes and in different wavelengths," she explained, referring to images acquired with visible light, radio waves and X-rays. Models then help astronomers predict which kinds of early galaxies evolved into disks like our Milky Way while others evolved into the round balls of stars that astronomers call elliptical galaxies.

Before joining Rutgers, Somerville held a joint appointment as associate research professor at Johns Hopkins University and associate astronomer with tenure at the Space Telescope Science Institute (STScI). STScI manages selection, planning and scheduling of scientific activities for the Hubble Space Telescope.

Before that, she held faculty appointments at the Max Planck Institute for Astronomy in Germany and the University of Michigan, and postdoctoral appointments at the Hebrew University in Jerusalem and Cambridge University in the United Kingdom.

Somerville's goal at Rutgers is to build more expertise in galaxy formation theory and help the department's astronomy group pursue new areas such as the study of extrasolar planets.

"Rutgers is a great place for galaxy formation theorists because we have opportunities to interact with the excellent observational astronomers here," she said, noting the university's involvement with the powerful new Southern African Large Telescope, also referred to as SALT. "I've benefitted from supportive colleagues and contact with graduate and undergraduate students. I'm constantly inspired by their enthusiasm."

.


Related Links
Department of Physics and Astronomy
Southern African Large Telescope
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Superbubble DEM L50
Huntsville AL (SPX) Feb 01, 2013
This composite image shows the superbubble DEM L50 (a.k.a. N186) located in the Large Magellanic Cloud about 160,000 light years from Earth. Superbubbles are found in regions where massive stars have formed in the last few million years. The massive stars produce intense radiation, expel matter at high speeds, and race through their evolution to explode as supernovas. The winds and supernova sho ... read more


STELLAR CHEMISTRY
US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

Mission would drag asteroid to the moon

STELLAR CHEMISTRY
AAS Division For Planetary Sciences Issues Statement On Mars 2020 Program

Curiosity Maneuver Prepares for Drilling

Ridges on Mars suggest ancient flowing water

Changes on Mars Caused by Seasonal Thawing of CO2

STELLAR CHEMISTRY
Sierra Nevada Corporation and Lockheed Martin Space Systems Company Partner On Dream Chaser Programs

NASA Launches Next-Gen Communications Satellite

NASA Takes Strides Forward to Launch Americans from U.S. Soil

Iran Takes First Step to Send Man to Space

STELLAR CHEMISTRY
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

STELLAR CHEMISTRY
NASA to Send Inflatable Pod to International Space Station

ISS to get inflatable module

ESA workhorse to power NASA's Orion spacecraft

Competition Hopes To Fine Tune ISS Solar Array Shadowing

STELLAR CHEMISTRY
Site of space rocket launch to become home of S. Korea's space program

Payload preps continue for first Ariane 5 flights of 2013

NASA Wallops Rocket Mission January 29 Prepping for Future Projects

Russia's Troubled Rocket Cleared for Launch

STELLAR CHEMISTRY
TW Hydrae: There's more to astronomers' favorite planetary nursery than previously thought

The Origin And Maintenance Of A Retrograde Exoplanet

New Evidence Indicates Auroras Occur Outside Our Solar System

Glitch has space telescope shut down

STELLAR CHEMISTRY
NTU research embraces laser and sparks cool affair

Bioinspired fibers change color when stretched

Stanford Researchers Break Million-core Supercomputer Barrier

Scientists trick iron-eating bacteria into breathing electrons instead




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement