. 24/7 Space News .
IRON AND ICE
Asteroid Bennu is rotating faster over time
by Staff Writers
Washington DC (SPX) Mar 13, 2019

This mosaic image of asteroid Bennu is composed of 12 PolyCam images collected on Dec. 2 by the OSIRIS-REx spacecraft from a range of 15 miles (24 km). The image was obtained at a 50 phase angle between the spacecraft, asteroid and the Sun, and in it, Bennu spans approximately 1,500 pixels in the camera's field of view.

In late 2018, the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft arrived at Bennu, the asteroid it will be studying and sampling over the next several years.

Now, new research in the AGU journal Geophysical Research Letters shows Bennu is spinning faster over time - an observation that will help scientists understand the evolution of asteroids, their potential threat to Earth and if they could be mined for resources.

Bennu is 110 million kilometers (70 million miles) away from Earth. As it moves through space at about 101,000 kilometers per hour (63,000 miles per hour), it also spins, completing a full rotation every 4.3 hours.

The new research finds the asteroid's rotation is speeding up by about 1 second per century. In other words, Bennu's rotation period is getting shorter by about 1 second every 100 years.

While the increase in rotation might not seem like much, over a long period of time it can translate into dramatic changes in the space rock. As the asteroid spins faster and faster over millions of years, it could lose pieces of itself or blow itself apart, according to the study's authors.

Detecting the increase in rotation helps scientists understand the types of changes that could have happened on Bennu, like landslides or other long-term changes, that the OSIRIS-REx mission will look for.

"As it speeds up, things ought to change, and so we're going to be looking for those things and detecting this speed up gives us some clues as to the kinds of things we should be looking for," said Mike Nolan, a senior research scientist at the Lunar and Planetary Laboratory at the University of Arizona in Tucson, who is the lead author of the new paper and the head of the OSIRIS-REx mission's science team. "We should be looking for evidence that something was different in the fairly recent past and it's conceivable things may be changing as we go."

The OSIRIS-REx mission is scheduled to bring a sample of Bennu to Earth in 2023. Understanding Bennu's rotational change could help scientists figure out what asteroids can tell us about the origin of the solar system, how likely it is for asteroids to pose a threat to humans and if they could be mined for resources.

"If you want to do any of those things, you need to know what is affecting it," Nolan said.

Detecting a change
In order to understand Bennu's rotation, scientists studied data of the asteroid taken from Earth in 1999 and 2005, along with data taken by the Hubble Space Telescope in 2012. It was when they looked at the Hubble data that they noticed the rotation speed of the asteroid in 2012 didn't quite match their predictions based on the earlier data.

"You couldn't make all three of them fit quite right," Nolan said. "That was when we came up with this idea that it had to be accelerating."

The idea that the rotation of asteroids could speed up over time was first predicted around 2000 and first detected in 2007, according to Nolan. To date, this acceleration has only been detected in a handful of asteroids, he said.

The change in Bennu's rotation could be due to a change in its shape. Similar to how ice skaters speed up as they pull in their arms, an asteroid could speed up as it loses material.

Nolan and his co-authors suggest the reason for the increase in Bennu's rotation is more likely due to a phenomenon known the YORP effect. Sunlight hitting the asteroid is reflected back into space. The change in the direction of the light coming in and going out pushes on the asteroid and can cause it to spin faster or slower, depending on its shape and rotation.

The OSIRIS-REx mission will determine Bennu's rotation rate independently this year, which will help scientists nail down the reason for the increase in rotation. Since spacecraft will never visit the vast majority of asteroids, the measurements will also help scientists learn how well ground-based measurements are able to understand these far-away objects.

"By testing these predictions in a few cases, we will significantly improve our confidence in predictions made for other objects," the study's authors write.

The measurement of Bennu's acceleration rate combined with the arrival of OSIRIS-REx at the asteroid gives scientists a great opportunity to validate the new study's results and test theories about the YORP effect, said Desiree Cotto-Figueroa, an assistant professor of physics and electronics at the University of Puerto Rico at Humacao, who was not involved in the new study.

"This is a great opportunity, in general, having this measurement and having the spacecraft OSIRIS-REx there observing this asteroid to help us better understand this effect, which is a dominant mechanism in the evolution of asteroids," she said.

Research paper


Related Links
American Geophysical Union
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Video showcases Hayabusa-2's asteroid touchdown
Washington (UPI) Mar 6, 2019
Japan's space agency, JAXA, released a video this week showcasing Hayabusa-2's successful asteroid touchdown. Last month, the probe skimmed the surface of the asteroid Ryugu. A review of the landing data by JAXA scientists confirmed the touchdown sequence happened as expected. "Data analysis from Hayabusa-2 confirms that the sequence of operation proceeded, including shooting a projectile into the asteroid to collect its sample material," JAXA announced last week. This week, JAXA ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Alcohol smell on ISS began dissipating after Crew Dragon undocked

JAXA and Toyota to study joint lunar project

Astronauts on aborted Soyuz launch to blast off again for ISS

Astronauts who survived Soyuz scare ready for new launch despite glitches

IRON AND ICE
SpaceX Dragon 2 pulls off nail-biting landing - here's the rocket science

ESA greenlight for UK's air-breathing rocket engine

Russia's New Hypersonic Nuclear Weapon

NASA chief acknowledges more trouble with SLS rocket

IRON AND ICE
NASA is with you when you fly, even on Mars

Pathfinder Rover May Have Explored Edges of Early Mars Sea in 1997

Bernese Mars Camera CaSSIS Returns Spectacular Images

Objects in the rear-view mirror may appear interesting

IRON AND ICE
Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

IRON AND ICE
New observations for the new economy

Lockheed Martin develops world-first LTE-Over-Satellite System

China launches new communication satellite

ESA helps business fly in space

IRON AND ICE
Light provides control for 3D printing with multiple materials

Physicists proposed fast method for printing nanolasers from rerovskites

At the limits of detectability

It's all in the twist: Physicists stack 2D materials at angles to trap particles

IRON AND ICE
Cooking Up Alien Atmospheres on Earth

ALMA observes the formation sites of solar-system-like planets

Neural Networks Predict Planet Mass

SETI Institute: Agreement with Unistellar to Develop Citizen Science Network

IRON AND ICE
Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare

Astronomers Optimistic About Planet Nine's Existence

New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.