. 24/7 Space News .
TIME AND SPACE
Ancient stars at the center of the galaxy contain 'fingerprints' from the early universe
by Staff Writers
Cambridge, UK (SPX) Nov 16, 2015


An artist's impression of a hypernova, an explosive death of a star roughly ten times more energetic than a normal supernova. Image courtesy ESO. For a larger version of this image please go here.

An international team of astronomers, led researchers from the University of Cambridge and the Australian National University, have identified some of the oldest stars in our galaxy, which could contain vital clues about the early Universe, including an indication of how the first stars died.

These stars, which have been at the very centre of the Milky Way for billions of years, contain extremely low amounts of metal: one of the stars is the most metal-poor star yet discovered in the centre of our galaxy. The stars also contain chemical fingerprints which indicate that the earliest stars may have died in spectacular deaths known as hypernovae, which were ten times more energetic than a regular supernova.

The findings, reported in the journal Nature, could aid in understanding just how much the Universe has changed over the past 13.7 billion years.

For decades, astronomers have been trying to determine what the Universe was like soon after the Big Bang - understanding how the first stars and galaxies formed is crucial to this goal. While some astronomers are looking outward to galaxies billions of light years away to untangle this mystery, others are looking inward to the centre of our galaxy.

If you've ever looked up at the night sky from a dark place you might see the centre of the Milky Way. There are billions of stars in our galaxy, and astronomers are interested in picking out the oldest stars and finding out about their chemical composition and movements.

Soon after the Big Bang, the Universe was entirely made up of only hydrogen, helium and small amounts of lithium. All of the other elements, like the oxygen we breathe or the sodium in our toothpaste, have been made inside stars or when they die as supernovae. This has led astronomers to search for extremely metal-poor stars: stars with lots of hydrogen, but very little of any other element.

It had been thought that the very first stars formed in the centre of the galaxy, where the effects of gravity are strongest. But after decades of searches, astronomers found that most stars in the centre of our galaxy have a similar metal content of those much closer to us. While the stars at the centre of the galaxy are about seven billion years older than the Sun, they're still not old enough to understand what the conditions were like in the early Universe.

Using telescopes in Australia and Chile, astronomers may have landed on a winning strategy to find the oldest stars in the galaxy. Stars with a low metal content look slightly bluer than other stars: a key difference that can be used to sift through the millions of stars at the centre of the Milky Way.

Using images taken with the ANU SkyMapper telescope in Australia, the team selected 14,000 promising stars to look at in more detail, with a spectrograph on a bigger telescope. A spectrograph breaks up the light of the star, much like a prism, allowing astronomers to make detailed measurements.

Their best 23 candidates were all very metal-poor, leading the researchers to a larger telescope in the Atacama desert in Chile. From this data the team identified nine stars with a metal content less than one-thousandth of the amount seen in the Sun, including one with one-ten-thousandth the amount - now the record breaker for the most metal-poor star in the centre of the galaxy.

"If you could compress all the iron in the Sun to the size of your fist, some of these stars would contain just a tiny pebble by comparison," said Dr Andrew Casey of Cambridge's Institute of Astronomy, one of the study's co-authors. "They're very, very different kinds of stars."

However, knowing that these stars have low amounts of metal wasn't enough to be certain that they formed very early in the Universe. They could be stars that formed much later in other parts of the galaxy that weren't as dense, and they are just now passing through the centre. To separate those possibilities, researchers measured distances and used precise measurements of the stars' movement in the sky to predict how the stars were moving, and where they had been in the past.

They found that while some stars were just passing through, seven of the stars had spent their entire lives in the very centre of our galaxy. Computer simulations suggest that stars like this must have formed in the very early Universe.

"There are so many stars in the centre of our Galaxy - finding these rare stars is really like looking for a needle in a haystack," said Casey. "But if we select these stars in the right way, it's like burning down the farm and sweeping up the needles with a magnet."

When the very first stars in the galaxy died, they left a chemical signature on the generation of stars reported on in this latest study. This chemical fingerprint suggests the very first stars may have died in spectacular deaths known as hypernovae, an explosion ten times more energetic than a regular supernova. This would make it one of the most energetic things in the Universe, and very different from the kinds of stellar explosions we see today.

"This work confirms that there are ancient stars in the centre of our Galaxy. The chemical signature imprinted on those stars tells us about an epoch in the Universe that's otherwise completely inaccessible," said Casey. "The Universe was probably very different early on, but to know by how much, we've really just got to find more of these stars: more needles in bigger haystacks."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Cambridge
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Machine learning could solve riddles of galaxy formation
Champaign IL (SPX) Nov 15, 2015
A new machine-learning simulation system developed at the University of Illinois promises cosmologists an expanded suite of galaxy models - a necessary first step to developing more accurate and relevant insights into the formation of the universe. The feasibility of this method has been laid out in two recent papers written by astronomy, physics and statistics professor Robert Brunner, hi ... read more


TIME AND SPACE
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

TIME AND SPACE
Upgrade Helps NASA Study Mineral Veins on Mars

Dust devils detected by seismometer could guide Mars mission

Amnesia Event Slows Down Opportunity Robotic Arm Work

Swiss Camera Leaves for Mars

TIME AND SPACE
Orion's European module ready for testing

General Dynamics demos SGSS Command and Control Infrastructure for NASA

Orion Service Module Stacking Assembly Secured For Flight

Global partnerships in orbit support economic growth on and off the Earth

TIME AND SPACE
New rocket readies for liftoff in 2016

China's self-developed Mars probe to be on show

Could Sino-U.S. cooperation bring the Martian home?

China's scientific satellites to enter uncharted territory

TIME AND SPACE
Cygnus Starts Final Round of Processing for Station Cargo Delivery

US astronauts dodge ammonia on risky spacewalk

UK astronaut dreams of heavenly Christmas pudding

NASA drops Boeing from race for $3.5 billion cargo contract

TIME AND SPACE
Recycled power plant equipment bolsters ULA in its energy efficiency

Purchase of building at Ellington a key step in Houston Spaceport development plans

More launches ahead for UH's Hawaii Space Flight Laboratory

LISA Pathfinder topped off for Vega launch that will test Relativity

TIME AND SPACE
New exoplanet in our neighborhood

Asteroid ripped apart to form star's glowing ring system

Astronomers eager to get a whiff of newfound Venus-like planet

New Results from GPI Exoplanet Survey

TIME AND SPACE
High-Q crystal microresonator fabricated by femtosecond laser

Vector network analysis using lasers

JILA's quantum crystal is now more valuable

Structure of 'concrete disease' solved









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.