. 24/7 Space News .
EARLY EARTH
Ancestors of land plants were wired to make the leap to shore
by Staff Writers
Madison WI (SPX) Oct 07, 2015


Liverwort plants, pictured here with moss and a fern, are an ancient lineage of land plant. Fossils suggest they may have been some of the first plants to colonize land 450 million years ago. Image courtesy of Jean-Michel Ane lab.

When the algal ancestor of modern land plants first succeeded in making the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting the stage for the vast array of terrestrial life.

But the genetic and developmental innovations plants used to make the leap to land have been enduring secrets of nature. Now, an international team of researchers, writing this week (Oct. 5, 2015) in the Proceedings of the National Academy of Sciences (PNAS), reveals that the aquatic algae from which terrestrial plant life first arose were genetically pre-adapted to form the symbiotic relationships with microorganisms that most land plants need to acquire nutrients from the soil.

The finding is important because it begins to flesh out the story of how the first land plants evolved from freshwater algae, formed critical symbiotic partnerships with microorganisms like fungi and bacteria, and made the world's land masses habitable. What's more, understanding the genetic pathways involved could ultimately help agronomists unlock similar genes that are likely conserved in plants such as cereals and the green algae that is the most promising biofuel stock but that now require substantial amounts of chemical fertilizer.

"We were expecting that these mechanisms arose with land plants," explains Jean-Michel Ane, a University of Wisconsin-Madison professor of bacteriology and agronomy and the senior author of the PNAS report. "The surprise was finding in algae the mechanisms we know allow plants to interact with symbiotic fungi."

The discovery shows for the first time that the algae already knew how to interact with beneficial microbes while it was still in the water, observes Pierre-Marc Delaux, who conducted the research as a postdoctoral fellow at UW-Madison and is now at the John Innes Centre in the U.K. "Without the development of this pre-adapted capability in algae, the Earth would be a very different place today," says Delaux.

Many extant plant species depend on symbiotic relationships with microorganisms to thrive. The most famous are legumes and their beneficial association with nitrogen-fixing bacteria. But many other plant species, notes Ane, depend on relationships with fungi to chemically convert minerals in soil to forms that benefit the plant.

The efficient acquisition of mineral nutrients, says Ane, was likely one of the primary challenges for the earliest land plants.

"The association between plants, algae and fungi probably played a really important role in the ability of plants to colonize land," according to the Wisconsin researcher. "In fact, many of us think early plants were able to colonize lands because they evolved the ability to associate with beneficial fungi."

The genes required to abet symbiosis between plants and microbes likely arose in a common ancestor of green algae and land plants, says Ane.

Prior to the new study, little was know about the associations between algae and fungi. The genetic pathways plants use to form a symbiosis with fungi were known in land plants called liverworts and hornworts, ancient lineages sister to all other land plant lineages. Liverworts thrive in damp environments worldwide and the oldest known liverwort fossils provide the earliest evidence of plants colonizing land.

"We had found these mechanisms in liverworts, but not algae previously," explains Ane.

And while microorganisms had been found before in association with algae, they were believed to be pathogens, not symbionts. "Nobody had studied associations in these freshwater algae. We think some of these associations may be beneficial."

Genetic features in plants, animals and microbes tend to be preserved and repurposed through evolutionary history. Discovering these pathways allowing associations with beneficial microbes in green algae and in cereals, which now require significant amounts of chemical fertilizer, could enable the engineering in plants of more efficient nutrient acquisition - significantly reducing the need for chemical fertilizers for food and bioenergy production.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wisconsin-Madison
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Stability of surviving communities increases following mass extinction
Washington DC (SPX) Oct 07, 2015
By using fossil data, researchers have found that the structure of ecological communities leading up to the Permian-Triassic Extinction, one of the largest drivers of biodiversity loss in history, is a key predictor of the ecological communities that would demonstrate stability through the event. As we are confronted with the reality of modern day mass extinction, identifying factors that ... read more


EARLY EARTH
Lunar Pox

Space startup confirms plans for robotic moon landings

Asteroids found to be the moon's main 'water supply'

Russian scientist hope to get rocket fuel, water, oxygen from Lunar ice

EARLY EARTH
MRO imagery reveals Red Planet's stressed substrate

Geology Award Going to Mars Landing Site Expert at JPL

Terraforming the Red Planet: Nuclear Blasts Could Warm Mars for Humans?

NASA Lays the Groundwork for Homesteading in Space

EARLY EARTH
Selected NASA Discovery Missions Include Three With PSI Ties

NASA Selects Investigations for Future Key Planetary Mission

Chinese herbal expert among Nobel medicine prize winners

Down to Earth and walking the line

EARLY EARTH
Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

China launches new type of carrier rocket: state media

EARLY EARTH
Meet the International Docking Adapter

NASA extends Boeing contract for International Space Station

Russian launches cargo spaceship to the ISS

Successful re-entry of H-II Transfer Vehicle Kounotori5

EARLY EARTH
Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

A satellite launcher for the Middle East

45th Space Wing supports ULA's 100th launch

EARLY EARTH
The Most Stable Source of Light in the World

Earth-class planets likely have protective magnetic fields, aiding life

Stellar atmosphere can be used to predict the composition of rocky exoplanets

Watching an exoplanet in motion around a distant star

EARLY EARTH
Caution: Shrinks when warm

Flipping molecular attachments amps up activity of CO2 catalyst

New system allows heightened purity of a metal binding compound

Redefining temperature with precision lasers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.