. 24/7 Space News .
EARLY EARTH
Amoebae diversified at least 750 million years ago, far earlier than expected
by Staff Writers
Sao Paulo, Brazil (SPX) Mar 01, 2019

Reconstitution of Amoebozoa's evolution shows significant Precambrian species diversity. This study changes the view of how life evolved in the very remote past and deepens the understanding of current climate change (a Thecamoebian protist of genus Cyclopixys)

Brazilian researchers have reconstructed the evolutionary history of amoebae and demonstrated that at the end of the Precambrian period, at least 750 million years ago, life on Earth was much more diverse than suggested by classic theory.

The study, which was supported by Sao Paulo Research Foundation - FAPESP, revealed eight new ancestral lineages of Thecamoebae, the largest group in Amoebozoa. Thecamoebians are known as testates because of their hard outer carapace or shell.

Interpretations of the evolution of Earth's atmosphere and climate change are also affected by the discovery that amoebae are more diverse than previously thought.

In this study, published in the journal Current Biology, researchers affiliated with the University of Sao Paulo's Bioscience Institute (IB-USP) in Brazil, in partnership with colleagues at the Mississippi State University in the United States, used innovative techniques to reconstruct the phylogenetic (evolutionary) tree of Thecamoeba, which belongs to the order Arcellinida.

The new phylogenetic tree was created using mathematical algorithms and the transcriptomes of 19 arcellinids found in nature today. The researchers also established the morphology and composition of the hypothetical ancestors of this group of amoebae and compared them with the fossil record.

The results showed that at least 750 million years ago, ancestors of the thecamoebians were already evolving. This finding indicates that the late Precambrian was more diverse than previously thought.

"We reached our conclusions using a combination of two major scientific areas - paleontology and phylogenetic systematics, the field within biology that reconstructs evolutionary history and studies the patterns of relationships among organisms. In this way, we were able to untangle one of the knots in evolutionary theory about life on the planet," said Daniel Lahr, a professor at IB-USP and lead author of the article.

Reclassification of Amoebozoa
The researchers completely dismantled the previous classification of thecamoebians. "We succeeded in developing a robust structure and for the first time, discovered eight deep lineages [from 750 million years ago] of arcellinids about which nothing was known," Lahr told.

The old thecamoebian classification was based on shell composition. "They were divided into agglutinate and organic. However, from our molecular reconstruction, we discovered that the classification is actually determined by shell shape rather than composition," Lahr said.

The old classification, he added, had been questioned for several years, but more evidence was needed to demolish it. Previous genetic research has shown that the classification was unsustainable, but not enough data were available to justify a new classification.

"The scientific community suspected that the arcellinid testate amoebae had emerged and evolved sufficiently to diversify some 750 million years ago. We've now succeeded in demonstrating this hypothesis," he said.

Past and future
According to Lahr, the study presents a different view of how microorganisms evolved on the planet. The late Precambrian was considered a period of low biotic diversity, with only a few species of bacteria and some protists.

"It was in this period 800 million years ago that the oceans became oxygenated. For a long time, oxygenation was assumed to have led to diversification of the eukaryotes, unicellular and multicellular organisms in which the cell's nucleus is isolated by a membrane, culminating in the diversification of macroorganisms millions of years later in the Cambrian," Lahr said.

The study published in Current Biology, he added, focuses on a detail of this question. "We show that diversification apparently already existed in the Precambrian and that it probably occurred at the same time as ocean oxygenation. What's more, geophysicists are discovering that this process was slow and may have lasted 100 million years or so," he said.

However, scientists do not know what pressure triggered this oxygenation. "Regardless of the cause, oxygenation eventually led to more niches, the eukaryotes diversified, and there was more competition for niches. One way to resolve the competition was for some lineages to become larger and hence multicellular," Lahr said.

The study has also contributed to a better understanding of today's climate change. "We began to understand in more depth how this microbial life affected the planet in several ways," Lahr said. "The climate changed in fundamental ways during the period, which saw the occurrence of the Sturtian glaciation some 717 million years ago. This was one of the largest glaciation events ever."

According to Lahr, these changes may have had biological origins. "By increasing the resolution of how life evolved in the very remote past, we can understand a little better how life affects the planet's climate and even its geology. That will help us understand the climate changes we're currently experiencing," he said.

In rock
In addition to the discovery of greater diversity in the Precambrian, the study also innovates by reconstructing the morphology of the ancestors of thecamoebians to establish that the vase-shaped microfossils (VSMs) found in various parts of the world already existed in the Precambrian and even in the major ice ages that occurred during this era.

VSMs are presumed to be fossils of testate amoebae. They are unicellular and eukaryotic and have an external skeleton. Significant diversity of VSMs has been documented for the Neoproterozoic Era, which spanned between 1 billion and 541 million years ago, and was the terminal era of the Precambrian.

"The study constitutes a very different vision of how microorganisms evolved on the planet. Although the fossils do not contain genetic information, it is possible to obtain morphological and compositional information and to verify whether they are organic or silica-based. So it's possible to compare their shape and chemical composition, which in this case are especially well preserved, with those of current thecamoebians reconstituted by big data," said Luana Morais, a postdoctoral researcher with a scholarship from FAPESP and coauthor of the article.

Innovative techniques
In addition to the lack of DNA-containing fossils, the researchers faced another obstacle in reconstructing the phylogenetic tree: thecamoebians cannot be cultured in the laboratory, and genetic sequencing by conventional means is therefore ruled out.

The solution to this problem was to use the single-cell transcriptome technique to analyze phylogenetics (instead of gene expression, its normal application). "We sequenced whole transcriptomes of arcellinid amoebae using live samples," Lahr explained. "This yielded several thousand genes and some 100,000 amino acid sites, or 100,000 datapoints giving us the phylogenetic tree, which had never been seen before."

The researchers used transcriptome-based methodology to capture all messenger RNAs from each individual cell and convert them into a sequenceable complementary DNA library.

"Our research drew fundamentally on single-cell transcriptomics, in which our lab is one of the worldwide pioneers," Lahr said. "It's a revolutionary technique in this field because it enables us to find a single [unicellular] amoeba, isolate and clean it, and perform all the laboratory procedures to sequence the whole transcriptome."

In this study, the researchers selected 250 genes to construct the phylogenetic tree. "It's no good looking at only one cell when you're studying gene expression, because the resolution will be insufficient," Lahr said. "In an evolutionary study, however, this doesn't matter. You need to obtain the sequence, not the number of times a gene is expressed. So it's possible to use this technique, which was originally developed for tumor cells, and adapt it, with the advantage that an amoeba cell is much larger than a tumor cell."

Before the technique was developed, only organisms grown in the laboratory could be sequenced. "It extends the range of my research in this field by enabling me to obtain genetic information from organisms I've only found once. It's estimated that only 1% or less of all biodiversity is cultivable," Lahr said.

Research paper


Related Links
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Giant animals lived in Amazonian mega-wetland
Sao Paulo, Brazil (SPX) Feb 27, 2019
A land of giants. This is the best definition for Lake Pebas, a mega-wetland that existed in western Amazonia during the Miocene Epoch, which lasted from 23 million to 5.3 million years ago. The Pebas Formation was the home of the largest caiman and gavialoid crocodilian ever identified, both of which were over ten meters in length, the largest turtle, whose carapace had a diameter of 3.5 meters, and rodents that were as large as present-day buffaloes. Remains of the ancient biome are scatte ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Virgin Galactic takes crew of three to altitude of 55 miles

Astronauts optimistic for ISS launch after botched flight

Space behaviour focus of Expedition 58

Technology developed in Brazil will be part of ISS

EARLY EARTH
SpaceX releases Israeli moon lander, pair of satellites into orbit

NASA greenlights SpaceX crew capsule test to ISS

ArianeGroup and CNES launch ArianeWorks acceleration platform

Raptor engine beats Russian RD-180 record in combustion chamber pressure says Musk

EARLY EARTH
InSight is the Newest Mars weather service

After a Reset, Curiosity Is Operating Normally

Creating a Space Colony Cryptocurrency

Northwestern study of analog crews in isolation reveals weak spots for Mission to Mars

EARLY EARTH
China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

China to send over 50 spacecraft into space via over 30 launches in 2019

China to deepen lunar exploration: space expert

EARLY EARTH
OneWeb satellite launch could be postponed after Soyuz emergency

Es'hailSat and BridgeSat offer low-cost laser satellite comms to the Middle East

United Launch Services, SpaceX awarded satellite contracts

RIT faculty part of NASA's $242 million SPHEREx mission

EARLY EARTH
Egypt to host Huawei's first MENA cloud platform: Cairo

Avoiding the crack of doom

Captured carbon dioxide converts into oxalic acid to process rare earth elements

NASA set to demonstrate x-ray communications in space

EARLY EARTH
Researchers discover a flipping crab feeding on methane seeps

Discovery of Planets Around Cool Stars Enabled with Hobby-Eberly Telescope

NIST 'Astrocomb' Opens New Horizons for Planet-Hunting Telescope

NASA Selects New Mission to Explore Origins of Universe

EARLY EARTH
New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule

Tiny Neptune Moon Spotted by Hubble May Have Broken from Larger Moon

Ultima Thule is more pancake than snowman, NASA scientists discover

New Horizons' evocative farewell glance at Ultima Thule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.