Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Ames Laboratory scientists develop indium-free organic light-emitting diodes
by Staff Writers
Ames IA (SPX) Dec 05, 2012


Ames Lab researcher Min Cai prepares a metal-oxide OLED.

Scientists at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered new ways of using a well-known polymer in organic light emitting diodes (OLEDs), which could eliminate the need for an increasingly problematic and breakable metal-oxide used in screen displays in computers, televisions, and cell phones.

The metal-oxide, indium tin oxide (ITO), is a transparent conductor used as the anode for flat screen displays, and has been the standard for decades.

Due to indium's limited supply, increasing cost and the increasing demand for its use in screen and lighting technologies, the U.S. Department of Energy has designated indium as "near-critical" in its assessment of materials vital to clean energy technology. Scientists have been working to find an energy efficient, cost effective substitute.

"There are not many materials that are both transparent and electrically conductive," said Joseph Shinar, an Ames Laboratory Senior Scientist.

"One hundred percent of commercial display devices in the world use ITO as the transparent conducting electrode. There's been a big push for many years to find alternatives."

"Everybody is trying to find a replacement for ITO, many working with zinc oxide, another metal oxide. But here we are working towards something different, developing ways to use a conducting polymer," said Min Cai, a post-doctoral research scientist in the Ames Laboratory and the Dept. of Physics and Astronomy at Iowa State University.

The polymer's name is a mouthful of a word: poly (3,4-ethylene dioxythiophene):poly(styrene sulfonate), known as PEDOT:PSS for short, and has been around for about 15 years.

Until recently, the material wasn't sufficiently conductive or transparent enough to be a viable ITO substitute, Shinar said. But by using a multi-layering technique and special treatments, Cai and his fellow scientists were able to fabricate PEDOT:PSS OLEDs with vastly improved properties.

"Compared to an ITO anode device, the PEDOT:PSS device is at least 44 percent more efficient," said Cai. According to Joe Shinar, that gain in efficiency over ITO-based technology is the highest yet recorded.

The researchers used computer simulations to show that the enhanced performance is largely an effect of the difference in the optical properties between the polymer- and ITO-based devices.

Another key property of PEDOT:PSS is flexibility; using ITO in OLEDs defeats one of OLED's big pluses compared to conventional LED technology.

"OLEDs can be made on a flexible substrate, which is one of their principal advantages over LEDs. But ITO is ceramic in nature; it is brittle rather than flexible," said Ruth Shinar, a Senior Scientist at Iowa State University's Microelectronics Research Center.

The findings, co-authored by Joseph Shinar and Ruth Shinar along with Min Cai, Zhuo Ye, Teng Xiao, Rui Liu, Ying Chen, Robert W. Mayer, Rana Biswas, and Kai-Ming Ho, were recently published in Advanced Materials, one of the most prominent journals in materials science and engineering.

The research builds on continuing work to find more affordable and efficient manufacturing materials and processes for OLED manufacturing.

An earlier paper published in Advanced Materials by Joseph Shinar and Ruth Shinar along with Min Cai, Teng Xiao, Emily Hellerich, and Ying Chen demonstrated the use of solution processing for small molecule-based OLEDs, which are typically constructed using a more expensive thermal evaporation deposition process.

The scientists' ongoing investigations into better materials and processes pave the way to more cost-efficient manufacturing and making OLED technology more widely available to consumers.

Joseph Shinar said that OLED televisions were already available to a limited high-end consumer, and that prices would come down as major manufacturers perfected their production processes. Both Samsung and LG exhibited a 55-inch OLED TV as a highlight feature of the 2012 Consumer Electronics Show in Las Vegas in January.

"We are already getting there with OLED televisions. Consumers will see them getting more affordable and more widely available in the very near future," said Joseph Shinar.

Shinar said the technology was also beginning to be used in lighting, in applications where diffuse light is preferred instead of point source lighting, and in architectural and art design.

.


Related Links
Ames Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Research discovery could revolutionise semiconductor manufacture
Lund, Sweden (SPX) Nov 30, 2012
A completely new method of manufacturing the smallest structures in electronics could make their manufacture thousands of times quicker, allowing for cheaper semiconductors. The findings have been published in the latest issue of Nature. Instead of starting from a silicon wafer or other substrate, as is usual today, researchers have made it possible for the structures to grow from freely suspend ... read more


CHIP TECH
WSU researchers use 3-D printer to make parts from moon rock

China's Chang'e-3 to land on moon next year

Moon crater yields impact clues

Study: Moon basin formed by giant impact

CHIP TECH
Opportunity Rover Does Walkabout Of Crater Rim

NASA Mars Rover Fully Analyzes First Soil Samples

Curiosity Shakes, Bakes, and Tastes Mars with SAM

China prepares to grow vegetables on Mars: state media

CHIP TECH
SciTechTalk: Media fixes for space junkies

NASA Voyager 1 Encounters New Region in Deep Space

Voyager discovers 'magnetic highway' at edge of solar system

Why Study Plants in Space?

CHIP TECH
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

CHIP TECH
Space Station to reposition for science

Spacewalks on agenda for new space crew

NASA, Roscosmos Assign Veteran Crew to Yearlong Space Station Mission

Three ISS crew return to Earth in Russian capsule

CHIP TECH
S. Korea readies new bid to join global space club

Arianespace Lofts Pleiades 1B Using Soyuz Medium-lift launcher

Japan Schedules Radar Satellite Launch

Arianespace ready for next Soyuz and Ariane missions

CHIP TECH
Search for Life Suggests Solar Systems More Habitable than Ours

Do missing Jupiters mean massive comet belts?

Brown Dwarfs May Grow Rocky Planets

Astronomers report startling find on planet formation

CHIP TECH
Countdown begins to the next generation of satellites

Android gains on Apple in surging tablet sector: survey

Organic metamaterial flows like a liquid, remembers its shape

A better way to make chemicals?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement