Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Advance in intense pulsed light sintering opens door to improved electronics manufacturing
by Staff Writers
Corvallis OR (SPX) Jan 03, 2017


File image.

Faster production of advanced, flexible electronics is among the potential benefits of a discovery by researchers at Oregon State University's College of Engineering.

Taking a deeper look at photonic sintering of silver nanoparticle films - the use of intense pulsed light, or IPL, to rapidly fuse functional conductive nanoparticles - scientists uncovered a relationship between film temperature and densification. Densification in IPL increases the density of a nanoparticle thin-film or pattern, with greater density leading to functional improvements such as greater electrical conductivity.

The engineers found a temperature turning point in IPL despite no change in pulsing energy, and discovered that this turning point appears because densification during IPL reduces the nanoparticles' ability to absorb further energy from the light.

This previously unknown interaction between optical absorption and densification creates a new understanding of why densification levels off after the temperature turning point in IPL, and further enables large-area, high-speed IPL to realize its full potential as a scalable and efficient manufacturing process.

Rajiv Malhotra, assistant professor of mechanical engineering at OSU, and graduate student Shalu Bansal conducted the research. The results were recently published in Nanotechnology.

"For some applications we want to have maximum density possible," Malhotra said. "For some we don't. Thus, it becomes important to control the densification of the material. Since densification in IPL depends significantly on the temperature, it is important to understand and control temperature evolution during the process. This research can lead to much better process control and equipment design in IPL."

Intense pulsed light sintering allows for faster densification - in a matter of seconds - over larger areas compared to conventional sintering processes such as oven-based and laser-based. IPL can potentially be used to sinter nanoparticles for applications in printed electronics, solar cells, gas sensing and photocatalysis.

Earlier research showed that nanoparticle densification begins above a critical optical fluence per pulse but that it does not change significantly beyond a certain number of pulses.

This OSU study explains why, for a constant fluence, there is a critical number of pulses beyond which the densification levels off.

"The leveling off in density occurs even though there's been no change in the optical energy and even though densification is not complete," Malhotra said. "It occurs because of the temperature history of the nanoparticle film, i.e. the temperature turning point. The combination of fluence and pulses needs to be carefully considered to make sure you get the film density you want."

A smaller number of high-fluence pulses quickly produces high density. For greater density control, a larger number of low-fluence pulses is required.

"We were sintering in around 20 seconds with a maximum temperature of around 250 degrees Celsius in this work," Malhotra.

"More recent work we have done can sinter within less than two seconds and at much lower temperatures, down to around 120 degrees Celsius. Lower temperature is critical to flexible electronics manufacturing. To lower costs, we want to print these flexible electronics on substrates like paper and plastic, which would burn or melt at higher temperatures. By using IPL, we should be able to create production processes that are both faster and cheaper, without a loss in product quality."

Products that could evolve from the research, Malhotra said, are radiofrequency identification tags, a wide range of flexible electronics, wearable biomedical sensors, and sensing devices for environmental applications.

Research Report


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Oregon State University
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Ultra-high-speed optical fiber sensor enables detection of structural damage in real time
Tokyo, Japan (SPX) Dec 21, 2016
Aging degradation and seismic damage of civil infrastructure pose a serious problem for society. One promising technology for monitoring the condition of structures is optical fiber sensing. By embedding long optical fibers into a structure, strain and temperature distributions along the fibers can be detected. Among the various types of optical fiber sensors, distributed strain and temper ... read more


TECH SPACE
India achieves advances multiple space systems in 2016

Spacewalk for Thomas Pesquet at ISS

NASA's Exo-Brake 'Parachute' to Enable Safe Return for Small Spacecraft

Trump sits down with tech execs, including critics

TECH SPACE
Preparing to Plug Into NASA SLS Fuel Tank

New round of wind tunnel tests underway for bigger SLS version

United Launch Alliance launches EchoStar XIX satellite

Ultra-Cold Storage - Liquid Hydrogen may be Fuel of the Future

TECH SPACE
Small Troughs Growing on Mars May Become 'Spiders'

All eyes on Trump over Mars

Opportunity performs several drives to ancient gully

Full go-ahead for building ExoMars 2020

TECH SPACE
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

TECH SPACE
Airbus DS and Energia eye new medium-class satellite platform

OneWeb announces key funding form SoftBank Group and other investors

Space as a Driver for Socio-Economic Sustainable Development

SoftBank delivers first $1 bn of Trump pledge, to space firm

TECH SPACE
Meet a 'Spacecraft Dressmaker'

NASA Satellite Servicing Office Becomes a Projects Division

Ultra-small nanocavity advances technology for secure quantum-based data encryption

Ultra-high-speed optical fiber sensor enables detection of structural damage in real time

TECH SPACE
Searching a sea of 'noise' to find exoplanets - using only data as a guide

Microlensing Study Suggests Most Common Outer Planets Likely Neptune-mass

Exciting new creatures discovered on ocean floor

Astronomers discover dark past of planet-eating 'Death Star'

TECH SPACE
Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation

New Perspective on How Pluto's "Icy Heart" Came to Be




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement