. 24/7 Space News .
ENERGY TECH
A simple way to make lithium-ion battery electrodes that protect themselves
by Staff Writers
Stanford CA (SPX) Jan 12, 2016


These are images of particles made from a promising battery cathode material called NMC. Scientists found a simple method for making layered NMC particles that store more energy while protecting themselves from degradation. The smallest particles, at bottom, are just 100 billionths of a meter in diameter; they clump into larger spherical particles, top. The color image at center shows the uneven distribution of chemical elements on a particle's surface, which is key to its improved performance. The black-and-white images were made with an electron microscope at Brookhaven National Laboratory; color images are based on X-ray studies at SLAC. Image courtesy SLAC National Accelerator Laboratory. For a larger version of this image please go here.

Scientists at three Department of Energy national laboratories have discovered how to keep a promising new type of lithium ion battery cathode from developing a crusty coating that degrades its performance. The solution: Use a simple manufacturing technique to form the cathode material into tiny, layered particles that store a lot of energy while protecting themselves from damage.

Test batteries that incorporated this cathode material held up much better when charged and discharged at the high voltages needed to fast-charge electric vehicles, the scientists report in a paper published Jan. 11 in the inaugural issue of Nature Energy.

"We were able to engineer the surface in a way that prevents rapid fading of the battery's capacity," said Yijin Liu, a staff scientist at SLAC National Accelerator Laboratory and a co-author of the report. The results are potentially significant because they pave the way for making lithium-ion batteries that are cheaper and have higher energy density.

Good Nickel, Bad Nickel
Chemistry is at the heart of all lithium-ion rechargeable batteries, which power portable electronics and electric cars by shuttling lithium ions between positive and negative electrodes bathed in an electrolyte solution. As lithium ions move into the cathode, chemical reactions generate electrons that can be routed to an external circuit for use. Recharging pulls lithium ions out of the cathode and sends them to the anode.

Cathodes made of nickel manganese cobalt oxide, or NMC, are an especially hot area of battery research because they can operate at the relatively high voltages needed to store a lot of energy in a very small space.

But while the nickel in NMC gives it a high capacity for storing energy, it's also reactive and unstable, with a tendency to undergo destructive side reactions with the electrolyte. Over time this forms a rock salt-like crust that blocks the flow of lithium ions, said study co-author Huolin Xin of Brookhaven National Laboratory.

In this study, the researchers experimented with ways to incorporate nickel but protect it from the electrolyte.

Particles that Protect Themselves
A team led by Marca Doeff at Lawrence Berkeley National Laboratory sprayed a solution of lithium, nickel, manganese and cobalt through an atomizer nozzle to form droplets that decomposed to form a powder. Repeatedly heating and cooling the powder triggered the formation of tiny particles that assembled themselves into larger, spherical and sometimes hollow structures.

This technique, called spray pyrolysis, is cheap, widely used and easily scaled up for commercial production. And in this case it did something unexpected. Like a cake batter that sorts itself into distinct layers during baking, the NMC particles emerged from the process with their basic ingredients redistributed.

The new structure became clear when the cathode particles were examined in detail at SLAC and Brookhaven. At SLAC's Stanford Synchrotron Radiation Lightsource, Liu and his colleagues used X-rays to probe the particles at a scale of 10-20 microns, or millionths of a meter. At Brookhaven's Center for Functional Nanomaterials, Xin and his team used a scanning transmission electron microscope to zoom in on details as small as billionths of a meter, a realm known as the nanoscale. A Simple Road to Higher Capacity

With both techniques and at every scale they looked, the particles had a different structure than the original starting material. When the SSRL team looked at tiny 3-D areas within the material, for instance, only 70 percent of them contained all three of the starting metals - nickel, manganese and cobalt.

"The particles have more nickel on the inside, to store more energy, and less on the surface, where it would cause problems," Liu said. At the same time, the surface of the particles was enriched in manganese, which acted like a coat of paint to protect the interior.

"We're not the first ones who have come up with idea of decreasing nickel on the surface. But we were able to do it in one step using a very simple procedure," Doeff said. "We still want to increase the nickel content even further, and this gives us a possible avenue for doing that. The more nickel you have, the more practical capacity you may have at voltages that are practical to use."

In future experiments, the researchers plan to probe the NMC cathode with X-rays while it's charging and discharging to see how its structure and chemistry change. They also hope to improve the material's safety: As a metal oxide, it could release oxygen during operation and potentially cause a fire.

"To make a real, functional battery that can be commercialized, you have to look beyond performance," Liu said. "Safety and many other things have to be considered."

Other researchers who contributed to this work were lead author Feng Lin and Matthew Quan of Berkeley Lab; Dennis Nordlund and Tsu-Chien Weng of SLAC; and Lei Cheng of Berkeley Lab and the University of California, Berkeley. This work was supported by DOE's Vehicle Technologies Office. SLAC's Stanford Synchrotron Radiation Lightsource and Brookhaven's Center for Functional Nanomaterials are DOE Office of Science User Facilities. F. Lin et al., Nature Energy, 11 January 2016, (0.1038/nenergy.2015.4)


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
SLAC National Accelerator Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Desert sand from UAE efficiently stores thermal energy
Abu Dhabi, United Arab Emirates (UPI) Jan 7, 2016
Researchers at the Masdar Institute of Science and Technology in United Arab Emirates have discovered a new solar energy storage material just outside their back door - desert sand. Testing shows desert sand from UAE can withstand temperatures up to 1,000 degrees Celsius, making it an ideal solar energy storage material. "The higher you can push your temperature, the more effici ... read more


ENERGY TECH
South Korea to launch lunar exploration in 2016, land by 2020

Death rumors of Russian lunar program 'greatly exaggerated' - Deputy PM

Russia Postpones Plans on Extensive Moon Exploration Until 2025

Rare full moon on Christmas Day

ENERGY TECH
Boulders on a Martian Landslide

NASA suspends March launch of InSight mission to Mars

University researchers test prototype spacesuits at Kennedy

Marshall: Advancing the technology for NASA's Journey to Mars

ENERGY TECH
Gadgets get smarter, friendlier at CES show

Congress to NASA: Hurry up on that 'habitation augmentation module'

NASA Reaches New Heights

Astronauts Tour Future White Room, Crew Access Tower

ENERGY TECH
China launches HD earth observation satellite

Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years

Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

ENERGY TECH
British astronaut's first spacewalk set for Jan 15

NASA Delivers New Video Experience On ISS

British astronaut dials wrong number on Xmas call from space

Space Station Receives New Space Tool to Help Locate Ammonia Leaks

ENERGY TECH
Arianespace starts year with record order backlog

Russian Space Forces launched 21 spacecraft in 2015

Russian Proton-M Carrier Rocket With Express-AMU1 Satellite Launched

45th Space Wing launches ORBCOMM; historically lands first stage booster

ENERGY TECH
Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

Exoplanets Water Mystery Solved

ENERGY TECH
New wave in tech: hacking the brain

Tech tethers dog lovers remotely to their pets

Thor's hammer to crush materials at 1 million atmospheres

Consumer Electronics Show awash with altered realities









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.