Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
A scientific experiment is able to create a wave that is frozen in time
by Staff Writers
Madrid, Spain (SPX) Jul 23, 2013


The static pipeline wave.

Scientists at the Universidad Carlos III of Madrid (UC3M) and the University of California - San Diego (UC San Diego) have created, in a laboratory, a static pipeline wave, with a crest that moves neither forward nor backward. This research will allow improvement in boat and seaport designs and will enable analysis of how carbon dioxide exchange between the ocean and the atmosphere occurs.

"A wave is a deformation in the surface of a liquid that moves at a speed that is independent of that liquid," the researchers explain. For example: in the waves that are formed when a rock is thrown into a pond, the water remains still while the waves move away from the center at their own speed.

"In our case, what occurs is actually the opposite: the water moves very rapidly (at several meters per second), but the wave moves at a speed of zero. That is, it remains still, "frozen" in time for any observer who sees it from outside of the water," explains one of the authors of the research report, Javier Rodriguez, of UC3M's Fluids and Thermal Engineering Department.

Every surfer's dream
In this experiment, which is described in an article published in the journal Experiments in Fluids, the scientists used digital processing techniques and visualization techniques that used a laser to reconstruct the form of the wave in three dimensions in order to compare it with real waves, similar to those that are ridden by surfers.

"The most remarkable thing is to observe a pipeline wave that remains still, to the point that we can put our fingers under the crest for as long as we want and not get wet, because this wave never breaks," describes Javier Rodriguez.

In order to recreate this phenomenon, the scientists constructed a small canal in a laboratory at the University. The prototype is relatively simple, they say: it consists of a semi-submerged panel with a square corner that partially obstructs the flow in a tank of water that is approximately the length of a van.

"This is the simplest and cheapest way to produce different heights in a very rapidly moving current of water," states Professor Rodriguez.

In the theoretical part of the study, in which the UC3M scientists are currently collaborating with colleagues from UC San Diego (USA) and from the University of East Anglia (United Kingdom), they are using computer simulation techniques and asymptotic analysis to create an approximate description of this wave's formation.

"This description is precise enough to enable us to understand its behavior; we are taking advantage of the fact that the wave is very slender. That is, as we move away from its starting point, its size slowly increases," points Pablo Martinez-Legazpi, a researcher at UC San Diego.

"As we investigate further into this subject," he adds, "we realize that this formation process is representative of and common to other waves that are of great interest to civil and naval engineering, such as waves that crash into ports, bridges or off-shore oil rigs during rough sea conditions."

Structural and environmental applications
Thanks to this experiment, it is possible to generate a wave that would never be static in Nature and to render it motionless in the laboratory for the time that is necessary to study it in detail.

Understanding how these waves are formed can be tremendously useful when predicting the intensity of the streams that appear when waves impact against marine structures (ports, off-shore oil rigs, ships, etc.) and it could help to anticipate the damage that they might cause. In fact, this research was suggested and partially financed by the US Navy due to its implications for improvements in naval hydrodynamics.

From the oceanographic point of view, this is also a very useful tool, as it allows for the implementation of a great number of research techniques that would be very difficult to apply to a wave in motion. In addition, it has direct environmental applications: it allows for a better response to what occurs on the marine surface when a wave breaks, which in turn can help scientists understand how carbon dioxide exchange between the ocean and atmosphere occurs.

"And although it has nothing to do with science, we also think this research can be of interest when it comes to creating decorative fountains or rides in water parks," notes Javier Rodriguez. "If, in addition to being interesting because it can help us understand the ocean, you can also have fun with it, why not do it?" he concludes.

Title: Plunging to spilling transition in corner surface waves in the wake of a partially submerged vertical plate Authors: Martinez Legazpi, P; Rodriguez-Rodriguez, J; Marugan-Cruz, C; Lasheras, JC Journal: EXPERIMENTS IN FLUIDS. Volume: 54. Number: 1. Article number: 1437. DOI: 10.1007/s00348-012-1437-7. Published in January 2013.

.


Related Links
Universidad Carlos III of Madrid
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Wobbly magnetic reconnection speeds up electrons
Paris (ESA) Jul 22, 2013
Scientists have discovered a missing piece in the puzzle of where high-energy particles in Earth's magnetosphere come from. Using data from ESA's Cluster mission, they found that magnetic reconnection can accelerate electrons to very high energies - as long as reconnection happens at a variable pace rather than steadily. The result will improve predictions of space weather, studies of fusion pla ... read more


TIME AND SPACE
First-ever lunar south pole mission could be attempted by 2016

Engine recovered from Atlantic confirmed as Apollo 11 unit

Soviet Moon rover moved farther than thought

Scientist says Earth may once have been orbited by two moons

TIME AND SPACE
Ancient snowfall likely carved Martian valleys

Reports Detail Mars Rover Clues to Atmosphere's Past

MAVEN Spectrometer Opens Window to Red Planet's Past

Curiosity Mars Rover Passes Kilometer of Driving

TIME AND SPACE
Boeing CST-100 Spacecraft Model Passes Water-Recovery Tests

NASA announces funding for far-out space research

The Zero Gravity Coffee Cup

Outside View: Future science fiction

TIME AND SPACE
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

TIME AND SPACE
NASA launches new probe of spacesuit failure

Space Station ARISS Software Upgraded by Student For Students

Astronaut's helmet leak forces abrupt end to spacewalk

NASA puzzled as astronaut's helmet leak halts spacewalk

TIME AND SPACE
Both payloads for Arianespace's next Ariane 5 flight are now mated to the launcher

SpaceX Testing Complete at NASA Glenn's Renovated Facility

Alphasat stacks up

ESA Signs Off On Baseline Configuration Of Ariane 6

TIME AND SPACE
Snow falling around infant solar system

'Water-Trapped' Worlds

A snow line in an infant solar system: Astronomers take first images

In the Zone: The Search For Habitable Planets

TIME AND SPACE
Magnets make droplets dance

Delayed Shield game gadget to hit market on July 31

World's cheapest computer gets millions tinkering

Thyroid cancer risk for 2,000 Fukushima workers: TEPCO




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement