. 24/7 Space News .
NANO TECH
A quantum breakthrough brings a technique from astronomy to the nano-scale
by Staff Writers
New York NY (SPX) Jan 07, 2020

The discovery of multi-messenger nanoprobes allows scientists to simultaneously probe multiple properties of quantum materials at nanometer-scale spatial resolutions.

Researchers at Columbia University and University of California, San Diego, have introduced a novel "multi-messenger" approach to quantum physics that signifies a technological leap in how scientists can explore quantum materials.

The findings appear in a recent article published in Nature Materials, led by A. S. McLeod, postdoctoral researcher, Columbia Nano Initiative, with co-authors Dmitri Basov and A. J. Millis at Columbia and R.A. Averitt at UC San Diego.

"We have brought a technique from the inter-galactic scale down to the realm of the ultra-small," said Basov, Higgins Professor of Physics and Director of the Energy Frontier Research Center at Columbia. Equipped with multi-modal nanoscience tools we can now routinely go places no one thought would be possible as recently as five years ago."

The work was inspired by "multi-messenger" astrophysics, which emerged during the last decade as a revolutionary technique for the study of distant phenomena like black hole mergers. Simultaneous measurements from instruments, including infrared, optical, X-ray and gravitational-wave telescopes can, taken together, deliver a physical picture greater than the sum of their individual parts.

The search is on for new materials that can supplement the current reliance on electronic semiconductors. Control over material properties using light can offer improved functionality, speed, flexibility and energy efficiency for next-generation computing platforms.

Experimental papers on quantum materials have typically reported results obtained by using only one type of spectroscopy. The researchers have shown the power of using a combination of measurement techniques to simultaneously examine electrical and optical properties.

The researchers performed their experiment by focusing laser light onto the sharp tip of a needle probe coated with magnetic material. When thin films of metal oxide are subject to a unique strain, ultra-fast light pulses can trigger the material to switch into an unexplored phase of nanometer-scale domains, and the change is reversible.

By scanning the probe over the surface of their thin film sample, the researchers were able to trigger the change locally and simultaneously manipulate and record the electrical, magnetic and optical properties of these light-triggered domains with nanometer-scale precision.

The study reveals how unanticipated properties can emerge in long-studied quantum materials at ultra-small scales when scientists tune them by strain.

"It is relatively common to study these nano-phase materials with scanning probes. But this is the first time an optical nano-probe has been combined with simultaneous magnetic nano-imaging, and all at the very low temperatures where quantum materials show their merits," McLeod said.

"Now, investigation of quantum materials by multi-modal nanoscience offers a means to close the loop on programs to engineer them."

Research Report: "Multi-messenger nanoprobes of hidden magnetism in a strained manganite"


Related Links
Columbia University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


NANO TECH
Creating a nanoscale on-off switch for heat
Pittsburgh PA (SPX) Dec 19, 2019
Polymers are used to develop various materials, such as plastics, nylons, and rubbers. In their most basic form, they are made up of many of identical molecules joined together over and over, like a chain. If you engineer molecules to join together in specific ways, you can control the characteristics of the resulting polymer. Using this method, Sheng Shen, an associate professor of mechanical engineering at Carnegie Mellon University, and his research team created a polymer thermal regulator that ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Record tech spending expected in US, show organizers say

DLR phantoms undergo fit check in NASA's Orion space capsule

NASA, Boeing complete successful landing of Starliner Flight Test

Facing industrial decline, Wales dreams of Silicon Valley

NANO TECH
Russia says first hypersonic missiles enter service

Commercial suborbital carrier rocket launched in China

China's reusable liquid rocket engine completes 500-second test

Roscosmos approves preliminary design of super heavy-lift launch vehicle

NANO TECH
Developing a technique to study past Martian climate

Promising progress for ExoMars parachutes

Mars 2020 Rover Completes Its First Drive

Mars Express tracks the phases of Phobos

NANO TECH
China's Xichang set for 20 space launches in 2020

China sends six satellites into orbit with single rocket

China launches satellite service platform

China plans to complete space station construction around 2022: expert

NANO TECH
The Internet of Things by satellite will become increasingly accessible

Apple reportedly working on secret space communications network

Kacific's first satellite in orbit

Iridium Continues GMDSS Readiness with Announcement of Launch Partners

NANO TECH
New nano-barrier for composites could strengthen spacecraft payloads

Lasers learn to accurately spot space junk

Northrop Grumman lands $1B contract for F-16 AESA radars

Solving the challenges of long duration space flight with 3D Printing

NANO TECH
Massive gas disk raises questions about planet formation theory

Researchers spy on planets as fluffy as cotton candy

Europe's exoplanet hunter blasts off from Earth

Europe's exoplanet hunter reaches orbit around Earth

NANO TECH
NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated

Aquatic rover goes for a drive under the ice









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.