. 24/7 Space News .
CARBON WORLDS
A new route to the scalable production of highly crystalline graphene films
by Staff Writers
Osaka, Japan (SPX) Aug 29, 2016


Transmission electron microscope images observed from the reduced graphene oxide films prepared by ethanol treatment at (a) 900+ C and (b) 1100+ C. For the high temperature treatment, the periodic bright spots are observed in the reduced graphene oxide films. This means that the crystallinity of the reduced graphene oxide is efficiently improved by high temperature treatment in ethanol environment. Image courtesy Osaka University. For a larger version of this image please go here.

Researchers discovered a procedure to restore defective graphene oxide structures that cause the material to display low carrier mobility. By applying a high-temperature reduction treatment in an ethanol environment, defective structures were restored, leading to the formation of a highly crystalline graphene film with excellent band-like transport. These findings are expected to come into use in scalable production techniques of highly crystalline graphene films.

Graphene is a material with excellent electric conductivity, mechanical strength, chemical stability, and a large surface area. Its structure consists of a one-atom-thick layer of carbon atoms. Due to its positive attributes, research on its synthesis and application to electronic devices is being conducted around the world.

While it is possible to create graphene from graphene oxide (GO), a material produced by chemical exfoliation from graphite through oxidative treatment, this treatment causes defective structures and the existence of oxygen-containing groups, causing GO to display low conducting properties. So far, carrier mobility, the basic indicator with which transistor performance is expressed, remained at a few cm2/Vs at most.

A group of researchers led by Ryota Negishi, assistant professor, and Yoshihiro Kobayashi, professor, Graduate School of Engineering, Osaka University; Masashi Akabori, associate professor, Japan Advanced Institute of Science and Technology; Takahiro Ito, associate professor, Graduate School of Engineering, Nagoya University; and Yoshio Watanabe, Vice Director, Aichi Synchrotron Radiation Center, have developed a reduction treatment through which the crystallinity of GO was drastically improved.

The researchers coated a substrate with 1-3 extremely thin layers of GO and added a small amount of ethanol to the up to 1100 C high temperature reduction process. The addition of the carbon-based ethanol gas led to the effective restoration of the defective graphene structure. For the first time in the world, this group managed to observe a band-like transport reflecting the intrinsic electric transport properties in chemically reduced GO films.

Band-like transport is a conduction mechanism in which the carriers use the periodic electric mechanisms in solid crystals as a transmission wave. The observed band transport in this study achieved a carrier mobility of ~210 cm2/Vs, currently the highest level observed in chemically reduced GO films.

The successful creation of thin graphene films achieved through the above reduction method has opened up the possibility of their application in a diverse set of electronic devices and sensors. The findings of this research group form a milestone in the development of scalable materials that utilize graphene's excellent physical properties.

This research was featured in Scientific Reports (Nature Publishing Group) on July 1, 2016.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Osaka University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Map helps maximize carbon-capture material
Houston TX (SPX) Aug 23, 2016
A careful balance of the ingredients in carbon-capture materials would maximize the sequestration of greenhouse gases while simplifying the processing - or "sweetening" - of natural gas, according to researchers at Rice University. The lab of Rice chemist Andrew Barron led a project to map how changes in porous carbon materials and the conditions in which they're synthesized affect carbon ... read more


CARBON WORLDS
Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

CARBON WORLDS
NASA Awards Launch Services Contract for Mars 2020 Rover Mission

Year-long simulation of humans living on Mars ends in Hawaii

Boredom was hardest part of yearlong dome isolation

Test for damp ground at Mars' seasonal streaks finds none

CARBON WORLDS
Grandpa astronaut breaks US space record

35 years later Voyager's legacy continues at Saturn

Chinese sci-fi prepares to master the universe

China opens longest glass bottom bridge in world

CARBON WORLDS
China Sends Country's Largest Carrier Rocket to Launch Base

China unveils Mars probe, rover for ambitious 2020 mission

China Ends Preparatory Work on Long March 5 Next-Generation Rocket Engine

China launches hi-res SAR imaging satellite

CARBON WORLDS
Space Station's orbit adjusted Wednesday

Astronauts Relaxing Before Pair of Spaceships Leave

'New port of call' installed at space station

US astronauts prepare spacewalk to install new docking port

CARBON WORLDS
Russian Carrier Rocket for Sea Launches Will Replace Ukraine's Zenit

SpaceX's Dragon cargo ship splashes down in Pacific

Intelsat "doubles down" with Arianespace for an Ariane 5 dual success

Kourou busy with upcoming Arianespace missions

CARBON WORLDS
Rocky planet found orbiting habitable zone of nearest star

A new Goldilocks for habitable planets

Venus-like Exoplanet Might Have Oxygen Atmosphere, but Not Life

Brown dwarfs reveal exoplanets' secrets

CARBON WORLDS
Why an uncanny crystal change could laser design

NIST's compact gyroscope may turn heads

New 10-foot dish will connnect ASU researchers directly with satellites

Northrop Grumman to Provide Navigation System for German Satellite









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.