. 24/7 Space News .
TIME AND SPACE
A new theory for how black holes and neutron stars shine bright
by Staff Writers
New York NY (SPX) Nov 28, 2019

Here, a massive super-computer simulation shows the strong particle density fluctuations that occur in the extreme turbulent environments that host black holes and neutron stars. Dark blue regions are low particle density regions, while yellow regions are strongly over-dense regions. Particles are accelerated to extremely high speeds due to the interactions with strongly turbulence fluctuations in this environment.

For decades, scientists have speculated about the origin of the electromagnetic radiation emitted from celestial regions that host black holes and neutron stars - the most mysterious objects in the universe.

Astrophysicists believe that this high-energy radiation - which makes neutron stars and black holes shine bright - is generated by electrons that move at nearly the speed of light, but the process that accelerates these particles has remained a mystery.

Now, researchers at Columbia University have presented a new explanation for the physics underlying the acceleration of these energetic particles.

In a study published in the December issue of The Astrophysical Journal, astrophysicists Luca Comisso and Lorenzo Sironi employed massive super-computer simulations to calculate the mechanisms that accelerate these particles. They concluded that their energization is a result of the interaction between chaotic motion and reconnection of super-strong magnetic fields.

"Turbulence and magnetic reconnection - a process in which magnetic field lines tear and rapidly reconnect - conspire together to accelerate particles, boosting them to velocities that approach the speed of light," said Luca Comisso, a postdoctoral research scientist at Columbia and first author on the study.

"The region that hosts black holes and neutron stars is permeated by an extremely hot gas of charged particles, and the magnetic field lines dragged by the chaotic motions of the gas, drive vigorous magnetic reconnection," he added. "It is thanks to the electric field induced by reconnection and turbulence that particles are accelerated to the most extreme energies, much higher than in the most powerful accelerators on Earth, like the Large Hadron Collider at CERN."

When studying turbulent gas, scientists cannot predict chaotic motion precisely. Dealing with the mathematics of turbulence is difficult, and it constitutes one of the seven "Millennium Prize" mathematical problems. To tackle this challenge from an astrophysical point of view, Comisso and Sironi designed extensive super-computer simulations - among the world's largest ever done in this research area - to solve the equations that describe the turbulence in a gas of charged particles.

"We used the most precise technique - the particle-in-cell method - for calculating the trajectories of hundreds of billions of charged particles that self-consistently dictate the electromagnetic fields. And it is this electromagnetic field that tells them how to move," said Sironi, assistant professor of astronomy at Columbia and the study's principal investigator.

Sironi said that the crucial point of the study was to identify role magnetic reconnection plays within the turbulent environment. The simulations showed that reconnection is the key mechanism that selects the particles that will be subsequently accelerated by the turbulent magnetic fields up to the highest energies.

The simulations also revealed that particles gained most of their energy by bouncing randomly at an extremely high speed off the turbulence fluctuations. When the magnetic field is strong, this acceleration mechanism is very rapid. But the strong fields also force the particles to travel in a curved path, and by doing so, they emit electromagnetic radiation.

"This is indeed the radiation emitted around black holes and neutron stars that make them shine, a phenomenon we can observe on Earth," Sironi said.

The ultimate goal, the researchers said, is to get to know what is really going on in the extreme environment surrounding black holes and neutron stars, which could shed additional light on fundamental physics and improve our understanding of how our Universe works.

They plan to connect their work even more firmly with observations, by comparing their predictions with the electromagnetic spectrum emitted from the Crab Nebula, the most intensely studied bright remnant of a supernova (a star that violently exploded in the year 1054). This will be a stringent test for their theoretical explanation.

"We figured out an important connection between turbulence and magnetic reconnection for accelerating particles, but there is still so much work to be done," Comisso said. "Advances in this field of research are rarely the contribution of a handful of scientists, but they are the result of a large collaborative effort."

Other researchers, such as the Plasma Astrophysics group at the University of Colorado Boulder, are making important contributions in this direction, Comisso said.

Research paper


Related Links
Columbia University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Planets around a black hole?
Tokyo, Japan (SPX) Nov 26, 2019
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun. They proposed the possibility of thousands of planets around a supermassive black hole. "With the right conditions, planets could be formed even in harsh environments, such as around a black hole," says Keiichi Wada, a professor at Kagoshima University researching active galactic nuclei which are luminous objects energized by black holes. According to the latest theories, planets are form ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Go for lunch: Japanese yakitori chicken gets space thumbs-up

Boeing Starliner Crew spacecraft heads to pre-launch processing

UAE eyes new frontiers with law to regulate space tourism, mining

UAE Space Agency Chief calls on region to create Arab Space Agency

TIME AND SPACE
MEASAT selects Arianespace for launch of MEASAT-3d

Ariane 6 parts come together, Europe's Spaceport prepares

Ariane 5's fourth launch this year

Roscosmos May Delay Progress MS-13 Cargo Spacecraft ISS Launch Due to Revealed Problems

TIME AND SPACE
Glaciers as landscape sculptors - the mesas of Deuteronilus Mensae

NASA updates Mars 2020 Mission Environmental Review

Global storms on Mars launch dust towers into the sky

Human Missions to Mars

TIME AND SPACE
China launches satellite service platform

China plans to complete space station construction around 2022: expert

China conducts hovering and obstacle avoidance test in public for first Mars lander mission

Beijing eyes creating first Earth-Moon economic zone

TIME AND SPACE
Airbus presents ground-breaking technology for EUTELSAT QUANTUM

ESA helps to make urban life smarter

ITU World Radiocommunication Conference adopts new regulatory procedures for non-geostationary satellites

China sends two global multimedia satellites into planned orbit

TIME AND SPACE
Smart satellites to the rescue of broken satellites

India's Space Minister reveals reason behind 'failed' Chandrayaan-2 lunar mission

NASA rockets study why tech goes haywire near poles

Raytheon nets $97.3M Navy contract for AN/SPY-6 radar work

TIME AND SPACE
Scientists sequence genome of devil worm, deepest-living animal

Scientists find a place on Earth where there is no life

Life under extreme conditions at hot springs in the ocean

NASA's TESS helps astronomers study red-giant stars, examine a too-close planet

TIME AND SPACE
Reports of Jupiter's Great Red Spot demise greatly exaggerated

Aquatic rover goes for a drive under the ice

NASA scientists confirm water vapor on Europa

NASA finds Neptune moons locked in 'Dance of Avoidance'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.