. 24/7 Space News .
TECH SPACE
A new invisibility cloak to conceal objects in diffusive atmospheres is devised
by Staff Writers
Valencia, Spain (SPX) Jan 24, 2017


The idea of making an object invisible by surrounding it in a special material capable of making the light bend around it was proposed about a decade ago.

As Carlos Garcia-Meca of the UPV's Centre for Nanophotonic Technology explained, diffusive environments are those in which the light is not propagated in a straight line, but bounces around.

"To provide some cases closer to us, a diffusive environment would be what we find on a foggy day, in cloudy water or in a place with smoke, but also in our organic tissue. Our proposal establishes the bases, for example to make a plane in the fog or a submarine in the sea undetectable," stressed Garcia-Meca.

The NUP-UPNA and UPV researchers have conducted a simulation of this new invisibility cloak and will soon be working to build it in the lab.

"It would be fairly straightforward because all we would need is two different materials with a specific diffusivity; by playing around with them we would be capable of producing the cloak that would cause the light to circulate around the object in such a way that the object would end up hidden. We could achieve perfect invisibility; but only for diffusive atmospheres, of course," stressed the lead researcher Bakhtiyar Orazbayev, who is conducting his work at the Public University of Navarre.

The idea of making an object invisible by surrounding it in a special material capable of making the light bend around it was proposed about a decade ago. Since then, scientists have discovered that producing a device of this type is fraught with difficulties from a fundamental as well a technological point of view.

"It has recently been shown that this difficulty disappears if the object one is intending to conceal is in a diffusive environment. In this case, and unlike in non-diffusive atmospheres, it is possible to build, in a fairly straightforward way, invisibility cloaks of a macroscopic size that work for any light direction and on a high bandwidth. However, the cloaks proposed so far do not work properly when the object is illuminated by short light pulses, essential in a large number of applications," pointed out Alejandro Martinez-Abietar, researcher at the Centre for Nanophotonic Technology.

The proposal devised by the UPV and NUP-UPNA researchers solves this problem by taking a different approach based on a technique known as transformation optics, which enables one to know which material is best suited to creating the cloak and concealing the object.

The devices have several applications which cannot be tackled by means of any previous design. "Apart from the ones already mentioned, they would render invisible objects susceptible to causing interference in communication systems and in image tomography systems in which work is often done with diffusive mediums such as organic tissue," concluded Miguel Beruete, a researcher at the Public University of Navarre.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Centre for Nanophotonic Technology
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Strength of hair inspires new materials for body armor
San Diego CA (SPX) Jan 18, 2017
In a new study, researchers at the University of California San Diego investigate why hair is incredibly strong and resistant to breaking. The findings could lead to the development of new materials for body armor and help cosmetic manufacturers create better hair care products. Hair has a strength to weight ratio comparable to steel. It can be stretched up to one and a half times its orig ... read more


TECH SPACE
Lomonosov Moscow State University to Launch 'Space Department' in 2017

French, US astronauts install batteries outside space station

'Hidden Figures' soars in second week atop box office

Russian Astronauts to Hold Terminator Experiment in Space

TECH SPACE
India Defers Much-Awaited Heaviest Rocket Launch

United Launch Alliance launches SBIRS GEO Flight 3 satellite

Ruptured oxidant tank likely cause of Progress accident

Next Cygnus Mission to Station Set for March

TECH SPACE
Opportunity Continues Its Journey South Along Crater Rim

New Year yields interesting bright soil for Opportunity rover

HI-SEAS Mission V crew preparing to enter Mars simulation habitat

Hues in a Crater Slope

TECH SPACE
China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

Beijing's space program soars in 2016

TECH SPACE
Iridium-1 NEXT Launched on a Falcon 9

Russia-China Joint Space Studies Center May Be Created in Southeastern Russia

EchoStar 19 positioned in orbital slot

OneWeb announces key funding from SoftBank Group and other investors

TECH SPACE
U.S. Army taps Leidos for training and simulation equipment

A new invisibility cloak to conceal objects in diffusive atmospheres is devised

Swiss air force upgrading surveillance radars

Strength of hair inspires new materials for body armor

TECH SPACE
Looking for life in all the right places with the right tool

Could dark streaks in Venusian clouds be microbial life

VLT to Search for Planets in Alpha Centauri System

Hubble detects 'exocomets' taking the plunge into a young star

TECH SPACE
Lowell Observatory to renovate Pluto discovery telescope

Flying observatory makes observations of Jupiter previously only possible from space

How a moon slows the decay of Pluto's atmosphere

York U research identifies icy ridges on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.