. 24/7 Space News .
TIME AND SPACE
A new explanation for the explosive nature of magnetic reconnection
by Staff Writers
Washington DC (SPX) Nov 13, 2015


Model of a current sheet of plasma with magnetic field lines that are ready to reconnect showing plasmoid instabilities in the center of the sheet. Image courtesy of Yi-Min Huang. For a larger version of this image please go here.

Magnetic reconnection, which occurs when magnetic lines of force break apart and reconnect with a violent burst of energy, gives rise to many beautiful and powerful phenomena in the natural world. These include solar flares, the Northern Lights, and geomagnetic storms that can disrupt cell-phone service or knock out power grids.

Scientists have long known that the Sweet-Parker model typically used to describe magnetic reconnection was unable to explain the speed at which it operates. Now, researchers have gone beyond the framework of that model to include new mechanisms that speed up reconnection, providing new insights into the process.

At the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), researchers found that the Sweet-Parker model itself is flawed. To solve the problem, the researchers turned their attention to plasmoids - instabilities that occur in plasma containing the reconnecting lines of force - as the possible cause of fast reconnection (Figure 1). These instabilities take place very rapidly and change the predictions described by the Sweet-Parker model.

The new model predicts a novel regime in which the fast reconnection rate appears to be independent of the resistivity - or resistance to electrical current - of the system.

"This fundamental discovery has attracted a great deal of interest from theorists as well as experimentalists in laboratory and space plasma physics," said Amitava Bhattacharjee, head of the Theory Department at PPPL. Bhattcharjee will present the findings in a talk to the 57th annual meeting of the American Physical Society-Department of Plasma Physics in Savannah, Georgia.

This new nonlinear model was developed by Bhattacharjee and Yi-Min Huang, a research scholar in Princeton University's Department of Astrophysical Sciences. The model is based on an earlier model of the linear instability by Nuno Loureiro, a former post-doctoral fellow at PPPL.

Loureiro now heads the Theory and Modeling Group at the Institute for Plasmas and Nuclear Fusion in Lisbon and will receive the Thomas H. Stix Award for Outstanding Early Career Contributions to Plasma Physics Research at the APS meeting.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Physical Society
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Recreating a heavenly chorus of plasma waves on Earth
Los Angeles CA (SPX) Nov 13, 2015
Recent experiments at the Large Plasma Device (LAPD) at the University of California, Los Angeles, have successfully excited elusive plasma waves, known as whistler-mode chorus waves, which have hitherto only been observed in the Earth's near-space environment. These chorus waves were accidentally discovered as early as World War I by radio operators deploying long lines intended to interc ... read more


TIME AND SPACE
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

TIME AND SPACE
Dust devils detected by seismometer could guide Mars mission

Amnesia Event Slows Down Opportunity Robotic Arm Work

Swiss Camera Leaves for Mars

NASA mission reveals speed of solar wind stripping Martian atmosphere

TIME AND SPACE
Orion's European module ready for testing

General Dynamics demos SGSS Command and Control Infrastructure for NASA

Orion Service Module Stacking Assembly Secured For Flight

Global partnerships in orbit support economic growth on and off the Earth

TIME AND SPACE
New rocket readies for liftoff in 2016

China's self-developed Mars probe to be on show

Could Sino-U.S. cooperation bring the Martian home?

China's scientific satellites to enter uncharted territory

TIME AND SPACE
Cygnus Starts Final Round of Processing for Station Cargo Delivery

US astronauts dodge ammonia on risky spacewalk

UK astronaut dreams of heavenly Christmas pudding

NASA drops Boeing from race for $3.5 billion cargo contract

TIME AND SPACE
LISA Pathfinder topped off for Vega launch that will test Relativity

Ariane 5 lofts dual birds

Rocket launch from Hawaii carrying UH payload experiences anomaly

Commercial Spaceflight Gets A Boost With Latest Congressional Moves

TIME AND SPACE
New Results from GPI Exoplanet Survey

Newfound Earth-size exoplanet may be an important milestone in search for alien life

UCLA professor proposes simpler way to define what makes a planet

Distant world's weather is mixed bag of hot dust and molten rain

TIME AND SPACE
Electron microscopy method sculpts 3-D structures at atomic level

BU Satellite Team Gets Big Boost from NASA

System helps novices design 3-D-printable robotic creatures

Queen's University professor to unveil self-levitating displays









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.